
Appendices for “Adversarially
Adaptive Normalization for Single

Domain Generalization”

A. Additional Experimental Results
On the Effect of Normalization. In Table 9, we study

the impact on the generalization ability by using different
normalization techniques with RSDA [53] for domain aug-
mentation on the Digits benchmark. It reports average accu-
racies, standard deviations and p-values for each domain in
the Digits benchmark. We observe that adding either batch
normalization (BN) or BN-test to the ConvNet architec-
ture makes the performance worse than the baseline with-
out any normalization layer. Instance normalization shows
small improvement over the baseline but still underperforms
ASR-Norm. ASR-Norm outperforms all methods on aver-
age and achieves significant improvement for challenging
domains, including SVHN and SYN. On the easier domains
like MNIST-M and USPS, ASR performs on a par with the
baseline (RSDA).

Method SVHN MNIST-M SYN USPS Avg.

RSDA+BN[22] 39.4±5.2 76.6±2.2 60.5±1.5 84.2±2.1 65.2
RSDA+BN-Test[37] 45.7±2.8 80.3±1.2 59.7±1.4 81.8±1.1 66.9
RSDA+IN[50] 47.1±3.4 80.6±0.9 61.9±1.5 85.4±1.4 68.8
RSDA+SN[32] 37.7±3.8 77.1±1.4 60.5±1.8 86.1±1.7 65.4
RSDA 47.4±4.8 81.5±1.6 62.0±1.2 83.1±1.2 68.5
RSDA+AR 47.8 ±3.2 80.0±1.0 64.0±0.9 86.7±1.5 69.6
RSDA+AS 49.4±2.3 81.4±0.7 63.5±1.2 81.4±1.1 69.3
RSDA+ASR (Ours) 52.8±3.8 80.8±0.6 64.5±1.1 82.4±1.4 70.1

p-value: Ours vs. RSDA 0.036 0.193 0.003 0.197 -
p-value: Ours vs. AS 0.050 0.088 0.115 0.108 -
p-value: Ours vs. AR 0.020 0.080 0.214 < 1e−3 -

Table 9: Single domain generalization accuracies with dif-
ferent normalization on Digits. MNIST is used as the train-
ing set, and the results on different testing domains are re-
ported in different columns.

Statistical significance of results on CIFAR-10-C. In
Table 10 reports the standard deviations and p-values for the
one-sided two-sample t-test on the accuracies for CIFAR-
10-C in addition to Table 5. The results show consistently
statistical significance of ASR-norm’s improvements over
M-ADA, SN, AR, and AS in different corruption levels.

Analysis of Residual Learning. Fig. 7a shows the evo-
lution of the adaptive weights λµ and λσ in the residual
terms of standardization statistics along the training process
of the PACS benchmark. The weights for learned statis-
tics are initialized close to 0 and learn to increase gradually,
meaning that the model favors the learned statistics increas-
ingly along the training process. That verifies the learned
statistics are indeed favored the model for domain general-
ization. We note that the increasing speed of the residual
weights for PACS is not as fast as that for CIFAR-10-C.

Method Level 1 Level 2 Level 3 Level 4 Level 5 Avg.

ERM+BN 87.8±0.1 81.5±0.2 75.5±0.4 68.2±0.6 56.1±0.8 73.8
ERM+ASR (ASR alone) 89.4±0.2 86.1±0.2 82.9±0.3 78.6±0.6 72.9±1.0 82.0
M-ADA 90.5±0.3 86.8±0.4 82.5±0.6 76.4±0.9 65.6±1.2 80.4
ADA+SN 91.5±0.2 88.4±0.6 85.5±0.5 81.2±0 7 75.3±0.8 84.4
ADA+AR 90.4±0.1 87.7±0.3 85.1±0.6 81.1±0.7 76.6±1.0 84.2
ADA+AS 91.4±0.1 88.9±0.2 86.3±0.4 82.8±0.5 77.3±0.7 85.4
ADA+ASR (Ours) 91.5±0.2 89.3±0.6 86.9±0.5 83.7±0.7 78.4±0.8 86.0

p-value: Ours vs. ERM/ERM+ASR/M-ADA < 1e−3 < 1e−3 < 1e−3 < 1e−3 < 1e−3 -
p-value: Ours vs. ADA+SN 0.5 0.025 0.006 0.001 < 1e−3 -
p-value: Ours vs. ADA+AR 0.001 0.003 0.005 0.003 0.050 -
p-value: Ours vs. ADA+AS 0.199 0.121 0.049 0.035 0.036 -

Table 10: Single domain generalization accuracies and p-
values on CIFAR-10-C with different corruption levels.
Significant results are highlighted (p-value ≤ 0.05).

The reason for that could be we used a pretrained model for
PACS, which already learned some useful statistics. Fig. 7b
shows the evolution of the adaptive weights λβ and λγ in
the residual terms of rescaling statistics, where we have the
similar observations.

Visualization of Learned Statistics. Figure 8 visualizes
the learned standardization statistics µstan and σstan using t-
SNE [33] for different domains in PACS. We notice that
the learned statistics show clustering structures for each do-
main, meaning that ASR-Norm learns different patterns of
standardization statistics for each domain. This finding re-
sembles previous papers on using domain-specific statistics
for multi-domain data [45]. However, our method learns the
soft clustered embeddings in an automatic way without the
hard domain label on each sample.

CIFAR-10-C Results for Different Corruption Types.
CIFAR-10-C contains 19 corruption types including,
brightness, gaussian noise, saturate, contrast, glass blur,
shot noise, defocus blur, impulse noise, snow, elastic trans-
form, jpeg compression, spatter, fog, speckle noise, frost,
motion blur, zoom blur, gaussian blur, and pixelate. These
19 corruption types can be categoried into 4 categories in-
cluding, noise, blur, weather, and digital categories [14].
Figure 6 shows the average accuracies for each corruption
type across five intensity levels. We observe that ASR-
Norm makes consistent improvements over BN in most cor-
ruption types, except for brightness.

B. Detailed Formulation of Adversarial Do-
main Augmentation

Adversarial domain augmentation (ADA) [53] approxi-
mately optimizes the robust objective LRL in Eq 2 by ex-
panding the training set with synthesized adversarial ex-
amples along the training process. Specifically, we define
the distance D between two distributions P and Q by the
Wasserstein distance as [53]:

Dθ(P,Q) := inf
M∈Π(P,Q)

EM [cθ((X,Y ), (X ′, Y ′))], (10)

where cθ is a learned distance measure over the space
X × Y . In ADA, cθ is measured with the semantic features

11



Figure 6: Single domain generalization results on CIFAR-10-C for each corruption type.

(a) Weights λµ, λσ . (b) Weights λβ , λγ .

Figure 7: Weights learn to increase the contribution from learned
statistics along the training process on the PACS benchmark.

(a) Visualization of σstan. (b) Visualization of µstan.

Figure 8: Visualization of learned standardization statistics for
different domains on PACS benchmark.

learned by the neural networks:

cθ((x, y), (x′, y′)) := c((Fθ(x), y), (Fθ(x
′), y′)), (11)

where Fθ is a feature extractor outputting intermediate acti-
vations in the neural networks, and

c((z, y), (z′, y′)) :=
1

2
‖z − z′‖22 +∞ · 1{y 6=y′}. (12)

Then, the key observation is that optimizing LR can
be solved by optimizing the Lagrangian relaxation with

penalty parameter η:

LRL := sup
P
{EP [l(θ; (X,Y ))]− ηDθ(P, Ps)}. (13)

The gradient of LRL, under a suitable condition, can be
rewritten as [3, 53],

∇θLRL = E(X,Y )∼Ps
[∇θl(θ; (x∗η, Y ))], (14)

where

x∗η = argmax
x∈X

{l(θ; (x, Y ))−ηcθ((x, Y )), (X,Y ))}. (15)

A min-max algorithm is used to estimate the gradients ap-
proximately as discussed in Sec. 3.1.2.

C. Additional Experimental Settings
In Figure 9, we show some visual examples from the

Digits benchmark. SVHN, MNIST-M and SYN are more
challenging domains that have larger distributional shift
from MNIST than USPS.

Figure 9: Single domain generalization with Digits benchmark.
Only MNIST is used for training and the goal is to learn a model
that generalizes well to other digits domains, including, SVHN,
MNIST-M, SYN, USPS.

12


