
Supplementary Material

Figure 1: Randomly selected detection results of a pretrained base class detector. Ground truths for novel classes are bounded
with black boxes, while detected instances of the base detector are bounded with green boxes and labeled with predicted
classes. The base detector’s ability to reject novel class objects, even with great salience to human, is apparent and phenom-
enal.

1. Implementation Details

Retentive R-CNN. As a transfer learning based method,
Retentive R-CNN is trained in two steps: the first step is
trained on Db, which follows the same hyperparameters and
learning schedule as in TFA[2]; the second step is trained on
a balanced dataset of both Cb ∪ Cn. During the finetuning
stage, we set learning rate to 0.05, coefficient for consis-
tency loss to 0.1 across all settings, and only the finetuned
RPN objectness is used. Note that the model is trained until
full convergence; thus, the learning schedule for finetuning

may vary from different datasplits. During inference, the
base detector’s classification logits are padded with 0 on the
novel class entries; then, softmax operation is conducted
on the padded logits to produce classification scores. As
all activation in the network is ReLU and the base detec-
tor utilizes an fc classifier, logits with zero value can make
good prior probabilities for novel classes, thus balance the
scale of scores as the number of class entries are less than
the novel detector. This improves base class AP and over-
all AP, e.g., overall AP increases from 32.0 to 32.1 under
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Figure 2: (a) Visualization of Retentive R-CNN and TFA w/cos[2] under Pascal VOC split1 2-shot settings. (b) Typical
failure cases of Retentive R-CNN.

MS-COCO 10-shot setting. The novel detector also predicts
base class probabilities, so we include these predictions for
the non-maximum suppression procedure as well. Though
consistency loss enhances the similarity between the predic-
tion of the base detector and novel detector on base classes,
the novel detector’s base class predictions show ensembling
effect to a certain extent, improving 0.05-0.1 base class AP
upon base class AP of the pretrained model.

Meta R-CNN[3] & FsDetView[1]. These two meta-
learning methods are originally finetuned on randomly se-
lected samples; we fix the samples to be the same as ours
for fintuning for a fair comparison. Note that in both works,
they finetune with base class samples as much as three times
more than novel class samples to maintain base class perfor-
mance, while we use the same number of samples to make
a fair comparison. As Meta R-CNN[3] does not provide
code for training on MS-COCO in the published implemen-
tation, we train Meta R-CNN[3] with identical hyperparam-
eters and settings as FsDetView[1] on MS-COCO, which is
implemented on the top of Meta R-CNN[3].

2. Examples for the Base Detector Rejecting
Novel Class Instances

Here we show more detection results from the pretrained
base model in Figure1 to better demonstrate the property
that the pretrained detector can reject novel class instances
even if they are of great saliency to humans. The images

are randomly selected from the first 100 images ordered by
image id of MS-COCO 2014 minival set without cherry-
picking. We bound the unrecognized novel class instances
with black boxes and the detected objects with green boxes
and their corresponding predicted category. Obviously, the
base detector has a strong ability to ignore novel classes,
thus false positives seldom occur from the base detector
when encountering unseen classes. This property is utilized
in Retentive R-CNN to maintain base class performance.

3. More Detection Results & Failure Case
Analysis

In this section, we show some extra detection results for
further demonstration of the effectiveness of our method
and a qualitative failure case analysis. Figure2(a) shows
representative results for comparing our method and TFA
w/cos[2] under Pascal VOC split1 2-shot setting. The con-
clusion is consistent with the qualitative comparison shown
in the main paper that our method typically performs bet-
ter on base classes due to the non-forgetting property and
reduces object confusion on novel class instances, suc-
cessfully detecting many of the ignored objects by TFA
w/cos[2]. Some extra detection visualization of our method
is shown in Figure3.

Nevertheless, both our method and previous works have
a vast metrics gap between few-shot classes and classes
trained from abundant data, indicating that few-shot object
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Figure 3: Extra visualization of the detection results from Retentive R-CNN. The first row shows results under MS-COCO
10-shot settings while the second row shows results under Pascal VOC split1 2-shot settings.

Methods 5 shot 10 shot 30 shot
AP bAP nAP AP bAP nAP AP bAP nAP

Retentive R-CNN 31.4 39.3 7.7 31.8 39.2 9.5 32.6 39.3 12.4
FRCN-ft-full[2] 14.4 17.6 4.6 13.4 16.1 5.5 13.5 15.6 7.4

TFA w/ fc[2] 25.6 31.8 6.9 26.2 32.0 9.1 28.4 33.8 12.0
TFA w/ cos[2] 25.9 32.3 7.0 26.6 32.4 9.1 28.7 34.2 12.1

Table 1: Results over 10 random runs on COCO dataset under 5, 10, 30-shot settings. Note that we use the same samples
as TFA[2] so that the metrics are directly comparable. We obtain better performance in terms of all metrics.

detection is still hard by nature. We analyze several typical
failure patterns in Figure2(b). The first four columns show
false positive cases, mainly due to: 1) Though not com-
mon, the base detector sometimes produces false positives
on unseen objects, producing overlapped predicted boxes of
both base and novel categories on the same instance; 2) fea-
tures are not discriminative enough for few-shot categories,
thus confusion among classes like misclassification among
few-shot classes and domination of base classes over novel
classes. The fifth column shows a typical case for transfer
learning based methods where novel class objects are hard
to be detected due to deactivation in the backbone, showing
that such bias caused by pretraining is hard to be alleviated.
The sixth column shows another failure pattern caused by
box regression, probably because accurate localization for
categories with complex shapes is also challenging to learn
under low-shot scenarios.

4. Results over Multiple Runs
To show the effectiveness of our method without random

effect, we ran our model over 10 sets of random samples un-
der 5, 10, 30-shot settings on COCO dataset, using exactly
the same samples as TFA[2]. The results are shown in Ta-
ble1. We obtain better performance in terms of all metrics
(AP, bAP, nAP) under each of these settings.
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