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1. Analysis of SOTA method

Table 1. Ratios of failure cases (%) of SOTA method [4].
Strong/Weak Semantics is estimated by classifying text in-
side/outside Oxford Dictionaries. ed is the edit distance.

Strong Semantics Weak Semantics Illegible &
ed=1 ed=2 ed ≥ 3 alphabet digit Wrong Label
23.2 11.0 11.6 26.9 3.6 23.7

We analyze the failure cases of current state-of-the-art
(SOTA) method SRN [4], as the statistical data shown in
Tab. 1. Among the failure cases, 45.8% text is with strong
semantics, which should be successfully reasoned by lin-
guistic rules. Specifically, 23.2% text is wrongly recognized
by SRN where the edit distance between predicted text and
ground truth is only 1. This denotes that there is still a big
room for enhancing SOTA methods in language modeling,
and therefore we propose the ABINet aiming to improve the
ability of language modeling.

2. Gradient analysis
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Figure 1. Analysis of gradient flow in ABINet.

As shown in Fig. 1, both vision and language models
receive gradient from either direct supervision or backpropa-
gation of fusion model, which ensures the independence of
each model. Besides, the iteration can be regarded as a data
augmentation method during training phase, which has no
disturbance on the flow of gradient.

*The corresponding author

3. Analysis of Successful/Failure Cases

Figure 2 gives some examples which are successfully rec-
ognized by ABINet-LVest (bottom text) and wrongly recog-
nized by ABINet-LV (top text). Failure cases of ABINet-LV
may come from extremely long text, unusual font, irregular
text, blurred images, etc. We directly resize all the images
to 32× 128, which is unfriendly to extremely long text due
to the squeezed visual patch. However, we observe that
learning from more data using a semi-supervised way can al-
leviate this problem obviously. Besides, even though we find
that the language model (BCN) can assist the recognition
of vision model dealing with unusual font, learning from
more text images with various fonts is still a straightforward
and effective way. We also find that some irregular text that
is not recognized by ABINet-LV can be resolved by semi-
supervised learning, which is the reason why ABINet-LVest

achieves significant performance on CUTE dataset (Tab.6
in regular manuscript). In the last three rows of Figure 2,
we visualize some hard examples caused by blurred images,
which indicates that ABINet-LVest is able to recognize text
under a hostile environment that even humans cannot read.

4. Experiment on Chinese Dataset

Table 2. Recognition accuracies on ICDAR2015 TRW.
Method Character Accuracy(%)
CASIA-NLPR[5] 72.1
SCCM w/o LM[3] 76.5
SCCM[3] 81.2
2D-Attention [4] 72.2
CTC [4] 73.8
SRN [4] 85.5
ABINet 87.1

To validate the performance on non-Latin recognition,
an additional experiment on ICDAR2015 Text Reading in
the Wild Competition dataset (TRW15) [5] is conducted.
Experimental setup follows the configuration of SRN [4].
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Figure 2. Recognition examples.

Specifically, ABINet is trained on a synthetic dataset with
4 million images, and the training sets of RCTW [1] and
LSVT [2]. From the results in Tab. 2 we can see, ABINet
obtains a 1.6% improvement on TRW15 dataset compared
with SRN, showing that our ABINet is also robust to Chinese
text recognition.
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