
This appendix provides additional material: §A contains
further results on “in-the-wild” data (§A.1), Kinetics-600
(K600) [10] and Kinetics-700 (K700) [11] data (§A.2) and
on the effect of key implementation details (§A.3).
§B contains additional implementation details for: Unsu-

pervised pre-training (§B.1), and downstream evaluation in
Kinetics (§B.2), AVA (§B.3), Charades (§B.4), Something-
Something V2 (§B.5), UCF101 (§B.6), HMDB51 (§B.7).

A. Additional Results
A.1. Scaling “in-the-wild” data

As a follow-up experiment Table 12 compares training
BYOL longer (200ep) to increasing its clips-size ρ but not
training longer (50ep). For both (a) curated and (b) random
data, this results in a significant gain of performance.

BYOL
ρ ep K400 UCF101
2 50 64.1 93.5
2 200 60.2 92.7
4 50 67.7 94.5

(a) IG-Curated-1M.

BYOL
ρ ep K400 UCF101
2 50 58.9 90.1
2 200 57.9 91.6
4 50 63.8 91.8

(b) IG-Uncurated-1M.

Table 12. More epochs (ep) vs. more clips (ρ), Longer training
degrades performance for BYOL, but increasing ρ does not.

We also explore an experiment for increasing the clip-
size in MoCo and training longer (as MoCo works stable for
more epochs). Table 13 shows the results. It can be observed
that increasing the number of clips from ρ=2 to ρ=3 can
increase the results by 1.6%/0.9% K400 and 0.4%/1% on
UCF101 for 100/200ep training. Going to ρ = 4 brings
further gain. In terms of efficiency, increasing ρ is both more
accurate and faster than increasing the number of epochs, e.g.
training MoCo (ρ=3, 100ep) takes only 63% of the duration
that MoCo (ρ=2, 200ep) requires.

MoCo (ρ=2) MoCo (ρ=3) MoCo (ρ=4)
ep K400 UCF101 K400 UCF101 K400 UCF101

100 67.5 93.3 69.1 93.7 69.8 94.9
200 69.0 93.4 69.9 94.4 69.9 94.9

Table 13. More epochs (ep) vs. more clips (ρ): Dataset: IG-
Curated-1M, ρ=2. Training longer is less effective than increasing
the number of temporal clips per iteration (ρ).

Finally, we remark that the IG-Curated-1M is subsam-
pled such that the hastags are uniformly distributed (roughly
balanced). Therefore this dataset is matching K400 in terms
of content and distribution. We revisit this point next by
investigating the effect of scale, curation and balancing of
the video data.

In this experiment, we increase the scale of the data
from 128K to 1M distinct videos. We increase dataset
size (number of videos) for IG-Curated [24], IG-Curated-
Unbalanced [24] (which has random class distribution), and

40

45

50

55

60

65

70

128K 240K 512K 1M

K
in

et
ic

s l
in

ea
r a

cc
ur

ac
y

Data scale in #videos

Kinetics IG-Curated IG-Curated-Unbalanced IG-Uncurated

Figure 4. Data scale and curation. We increase dataset size (num-
ber of videos) for IG-Curated, IG-Curated-Unbalanced, and IG-
Uncurated. By using 4× the number of videos, IG-Uncurated
approaches the heavily curated Kinetics (K400) pre-training on
K400 linear evaluation protocol. The dotted line represents a linear
trend. Method: MoCo, 200 epochs, ρ=2.

IG-Uncurated (which are random IG videos). The experi-
ment with 200-epoch MoCo with ρ=2, linear protocol down-
stream evaluation on K400 is shown in Fig. 4 and reveals:

(i) Comparing the curation axis: At 240K training sam-
ples, the four data sources provide 65.8%, 63.2%, 63.1%,
60.6% top-1 accuracy for K400, IG-Curated, IG-Curated-
Unbalanced and IG-Uncurated, respectively. The decay from
the heavily curated K400 to IG-Curated (2.6%) is similar to
the one from IG-Curated to IG-Uncurated (2.5%), while the
class balancing seems to have a minor effect on accuracy.

(ii) Comparing the scale axis: Doubling the data scale
(number of videos) roughly linearly increases the accuracy
across all datasets. With 1M uncurated videos the perfor-
mance approaches 65.4% which is similar to the 65.8% pro-
duced by using K400 pre-training. The experiment indicates
that it is possible to approach unsupervised Kinetics pre-
training when using 4×more (1M vs. 240K in Kinetics), but
random, videos when evaluating on Kinetics.

A.2. Scaling Kinetics data

As referenced in Sec. 4 of the main paper, Table 14 shows
a series of extra results for pre-training on the larger-scale
Kinetics-600 (K600) [10] and Kinetics-700 (K700) [11]
datasets, and is analyzed next: The first row of the table
shows supervised training on the respective datasets, where
UCF101 has two entries, one for training-from-scratch and
one for using K400 as pre-training.

For the experiments we focus on our temporally persis-
tent MoCo algorithm and, as in the main paper, evaluate
Kinetics with the linear classification protocol and UCF101
by finetuning all weights. The first unsupervised row in
Table 14 shows our best K400 pre-trained MoCo (ρ=4)
model, achieving 69.0%, 70.0%, 54.2% and 93.6% on K400,
K600, K700 and UCF101, respectively (this is the model
with strong augmentations from Table 10 of the main paper).

pre-train finetune
method data #videos K400 K600 K700 UCF101

supervised
scratch 74.7 78.1 65.2 68.8

K400 240k linear protocol 94.8
MoCo (ρ=4) K400 240k 69.0 70.0 54.2 93.6
MoCo (ρ=2)

K600 387k
69.6 70.7 55.1 92.7

MoCo (ρ=4) 71.5 72.8 57.7 94.5
MoCo (ρ=2)

K700 522k
70.0 71.4 56.2 92.8

MoCo (ρ=4) 71.7 73.2 58.1 94.8

Table 14. Dataset scale: Configuration: backbone: R-50, Slow 8 × 8, 200 epochs. Our approach, MoCo (ρ=4), is able to approach
supervised pre-training on the popular UCF101 evaluation protocol, but there remains a gap for the linear protocol on K400, K600 and K700.

The next row shows MoCo trained on K600 with a tempo-
ral persistency objective across two clips, ρ=2. This version
is able to slightly outperform the K400 pre-trained variant
on all datasets, except UCF101. Directly comparing this
version with learning temporal persistency across ρ=4 clips
can significantly increase accuracy on all datasets by ∼2%.

The final two rows of Table 14, show the same two models
when pre-trained on K700. Here, we see that going from
K400 to K700 increases accuracy by 2.7%, 3.2% and 3.9%,
1.2% on K400, K600, K700 and UCF101, respectively.

Overall the experiments suggest clear benefits of using
larger-scale datasets for unsupervised pre-training and room
for improvement under the linear classification protocol,
especially when evaluated on larger datasets.

A.3. Key implementation specifics

While the full implementation details of all four meta-
methodologies are provided in §B.1, we want to discuss the
most impactful ones, which we found critical to achieve good
performance in their realizations, throughout this section.

mbase N/A 0.988 0.990 0.992 0.994 0.996
acc. 64.5 65.5 65.5 65.6 65.8 65.1

Table 15. Momentum annealing for MoCo. Dataset: K400, 200
epochs, ρ= 2. Using cosine-annealing of the momentum brings
gains of ∼1% accuracy. We use 0.994 as default for MoCo.

Momentum annealing. BYOL is using an annealing of the
rate at which parameters of the momentum encoder θm, that
are a moving average, with momentum m, of the trained
encoder θ. During training BYOL starts with a momentum
of mbase=0.996 and increases it to 1 with a cosine anneal-
ing m = 1 − (1 −mbase) · (cos(πk/K) + 1)/2 with k the
current iteration and K the maximum number of training
iterations [32] (this is unrelated to the learning rate decay).

By default MoCo, is using a fixed momentum of m =
0.999 during training. In Table 15, we ablate the positive
(or negative) effect of using momentum annealing with dif-
ferent starting rates mbase for MoCo. We observe that not
using any annealing (N/A) produces 64.5% accuracy and
using momentum annealing can boost this performance by
∼1%, while being relatively stable for different values of
mbase. Consequently, we are using momentum annealing
with mbase = 0.994 for all our MoCo experiments.

10

20

30

40

50

60

70

None LARS LARS LARS

K
in

et
ic

s l
in

ea
r a

cc
ur

ac
y

MoCo BYOL SimCLR SwAV

MLP-BN
SyncBNSyncBN

Figure 5. Key implementation specifics. BYOL, SimCLR, SwAV
heavily rely on LARS, SyncBN, and BN in the MLP (MLP-BN),
MoCo does not require these, but does not benefit of having them.

Normalization and optimization. Here, we present nor-
malization specifics that we found critical to achieve good
performance in the underlying implementation of the meth-
ods: SimCLR, BYOL and SwAV are using synchronized
Batch-Normalization (BN) [42] statistics (SyncBN) across 8
GPUs during training, batch-normalization after every MLP
layer (MLP-BN), and a large-batch optimizer (LARS) [95].
LARS adaptively scales the learning rate for each individual
parameter by using the ratio between gradient and parameter
magnitudes. MoCo is not using these components (None) by
default. In Fig. 5 we illustrate the results. It shows accuracy
on K400 linear readout, if step-by-step adding these specifics
to the methods. We make the following observations:

(i) Using None of the augmentations provides best per-
formance for MoCo (its default) but significantly degrades
BYOL, SimCLR and SwAV. Here, it is worth noting that
BYOL provides decent accuracy of 32.9% without SyncBN,
LARS and any BN in the MLP.

(ii) Adding LARS optimizer reduces performance in
MoCo and BYOL, while having a boost of around 10% for
both SimCLR and SwAV. It is interesting, that solely using
a more advanced optimizer, which adapts the learning rates
of the weights according to their gradient magnitudes, de-
creases performance in methods using a momentum encoder
(MoCo, BYOL), but boosts it without (SimCLR, SwAV).

(iii) further adding SyncBN and MLP-BN increases BYOL
performance dramatically; this related to recent studies [74]
which suggest that normalization is important to achieve
good performance using BYOL.

(iv) While BYOL, SimCLR and SwAV do show further
gains for adding SyncBN and MLP-BN, MoCo shows no sig-
nificant change for using SyncBN, and degrades drastically
in performance for using BN in the MLP-head.

Projection MLP. It has been shown that using a deeper
projection MLP in pre-training can increase the accuracy of
the resulting representations for image classification [12, 14,
13]. Here, we investigate the effect of more hidden layers for
video classification, across all four meta architectures. The
results are shown in Table 16 and discussed next.

(i) MoCo achieves a significant gain of 1.2% on K400
for using a 3-layer (2 hidden layers) MLP vs. using a 2-
layer MLP and there is no gain for using a 4th layer. UCF
performance appears stable to this modification. The gain is
in line with results in image classification [14].

(ii) For BYOL, which has an additional Predictor MLP,
with weights θp (see Fig. 2c), we ablate two dimensions: in-
creasing the projection depth, and the prediction depth. Our
results show that using 3-layer projection vs. 2-layer does
not affect performance on K400, and has a decay of -0.7%
on UCF101. Increasing also the depth of the predictor from
our default value of 2 to 3 layers will lead to a significant
decrease of -2.2% and -2.5% on both K400 and UCF101.

(iii) SimCLR, shows similar behavior as MoCo: A con-
sistent gain for using 3 projection layers (+1.5% on K400,
+0.5% on UCF101), and no further gain for a 4-layer MLP.

(iv) SwAV shows continuing gains on K400 for adding
more MLP layers, +1.3% for going from 2 to 3 and another
+0.4% for 4-layer MLP; however, its UCF-101 performance
is decaying with more projection layers.

Overall, Table 16 suggests that K400 linear evaluation ac-
curacy gernally benefits from deeper projection heads, while
the performance for fine-tuned UCF101 downstream perfor-
mance is relatively unchanged and rather shows a decaying
effect for deeper MLPs. When studying the training com-
plexity for pre-training, which we measure as floating point
operations (FLOPs) and Parameters for the full training ar-
chitecture (encoders + MLPs), Table 16 shows that FLOPs
are mostly unchanged by deeper MLPs (as they operate on
feature maps of size 1×1×1), but parameters increase lead-
ing to large models especially for momentum encoder based
approaches (MoCo and BYOL).

B. Additional Implementation Details
B.1. Unsupervised pre-training

Training details. We use the initialization outlined in [38].
The projection and prediction MLP weights are initialized
with [27]. We optimize with synchronized SGD training
on 64 GPUs with a mini-batch size of 8 clips per GPU;
therefore, the total mini-batch size is 512. We train with
Batch Normalization (BN) [42], and the BN statistics are
computed within each 8 clips for MoCo and 64 clips by

method MLP layers training accuracy
FLOPs Param K400 UCF101

MoCo
2 41.74G 72.2M 64.6 91.3
3 41.74G 80.6M 65.8 91.0
4 41.75G 88.9M 65.7 91.0

BYOL
2, predictor: 2 41.75G 86.4M 65.8 92.7
3, predictor: 2 41.77G 119.9M 65.8 92.0
3, predictor: 3 41.78G 153.5M 63.6 90.2

SimCLR
2 41.74G 36.1M 59.0 88.4
3 41.75G 40.3M 60.5 88.9
4 41.75G 44.5M 60.6 88.5

SwAV
2 41.74G 36.2M 60.3 88.1
3 41.75G 40.4M 61.6 87.3
4 41.75G 44.6M 62.0 87.1

Table 16. Varying depth of MLPs. Dataset: K400, 200 epochs,
ρ=2. Training complexity is measured in floating point operations
(FLOPs) and Parameters. Accuracy is reported as linear evaluation
(K400) and fine-tuning (UCF101) of the backbone without MLPs.

synchronizing across 8 GPUs (SyncBN) for BYOL, SimCLR
and SwAV. We adopt a half-period cosine schedule [57] of
learning rate decaying: the learning rate at the n-th iteration
is η·0.5[cos(n

nmax
π)+1], where nmax is the maximum training

iterations and the base learning rate η is set for each method
to ηMoCo = 0.4, and ηSimCLR = ηBYOL = ηSwAV = 4.8.
We apply (LARS) [95] (except for bias and BN parame-
ters [32]), with trust coefficient of 0.001, for BYOL, Sim-
CLR, and SwAV training. The SGD weight decay is 10−4

for MoCo and 10−6 for for BYOL, SimCLR and SwAV.
The temperature parameter α = 0.1 for MoCo, SimCLR
and SwAV. The projection MLP output dimensions are
dMoCo = dSimCLR = ηSwAV = 128, and dBYOL = 256, as in
their original publications [36, 12, 9, 32].

MoCo details. We use a queue storing 65536 negatives and
shuffling BN to avoid intra-batch communication among
samples [36]. We use a 3-layer (2 hidden layers, abla-
tion in Table 6 of the main paper) projection MLP with
hidden dimension 2048, ReLU activation [64] and no BN.
Other hyperparameters are as in [36, 14]. The momentum
encoder weights θm are updated with an annealed momen-
tum m = 1− (1−mbase) · (cos(πk/K) + 1)/2 with k the
current iteration andK the maximum number of training iter-
ations [32], starting with mbase = 0.994. The corresponding
ablation is in Table 3 of the main paper.

BYOL details. Our BYOL implementation uses a momen-
tum annealing starting from mbase = 0.996. We minimize
the negative cosine similarity in equation (2) of the main
paper multiplied by 2 which is equivalent to BYOL’s MSE
of `2-normalized vectors [32]. The projection and prediction
MLPs have 2 layers (one hidden layer with dimension 4096)
and use BN following the original publication [32].

SimCLR details. We follow the default implementa-
tion [12]. We use a 3-layer projection MLP with a hidden
dimension of 2048, ReLU and BN. The loss in equation (1)
of the main paper is computed synchronized over the full
batch size.

SwAV details. We follow the default implementation [9],
using 3 Sinkhorn-Knopp iterations [15] and freezing the
prototypes for the first epoch. The Sinkhorn regularization
parameter is set to 0.05. As in the default implementation [9],
the matrix normalization statistics of the Sinkhorn-Knopp
algorithm are computed synchronized over the full training
batch. The projection MLP uses ReLU and BN and is identi-
cal to the one used in [9], only that we use a 3-layer MLP
instead of 2 (ablations are in Table 6 of the main paper).

Encoder details. Our default encoder, fθ, is a R-50 Slow
model [20], i.e. a ResNet-50 [39] with a temporal dimension
of size T and sample rate τ . We perform all ablations with
default T×τ of 8×8. We show the architecture in Table 17.

Augmentation details. We perform video decoding and
data augmentation using PyTorch’s torchvision package.

We obtain different clips from a video by the following
procedure. For the temporal dimension, we randomly sam-
ple a clip (of T×τ frames) from the full-length video, and
the input to the ResNet encoder are T frames subsampled
from the raw clip with a stride of τ ; for the spatial dimen-
sion, we randomly crop 224×224 pixels from a video, or
its horizontal flip, with a shorter side randomly sampled in
[256, 320] pixels [20] (VGG-style [77, 39] spatial cropping,
a comparison to Inception-style [81] cropping, which we use
for results in §4.5, is given in Table 9 of the main paper).

To each clip, we apply a random horizontal flip,
color distortion and Gaussian blur following the SimCLR
and MoCo v2 implementation [12, 14]. For color aug-
mentation we use the ColorJitter (probability 0.8)
and RandomGrayscale (probability 0.2) method from
torchvision.transforms module of PyTorch with
the color strength parameter s: {brightness, contrast, satu-
ration, hue} = {0.4s, 0.4s, 0.4s, 0.1s} By default s=0.5.
Ablations are given in Table 8 of the main paper. For Gaus-
sian blur we use a spatial kernel with standard-deviation
∈ [0.1, 2.0] applied with probability of 0.5.

B.2. Details: Kinetics Action Classification

Datasets. Kinetics-400 [47] consists of ∼240k training
videos and 20k validation videos in 400 human action cat-
egories. Kinetics-600 [10] has ∼392k training videos and
30k validation videos in 600 classes. Kinetics-700 [11]
has ∼523k training videos and 35k validation videos in 600
classes.

Linear classification protocol. We validate the methods
by linear classification on frozen features, following the
common protocol in image classification [36]. After unsu-
pervised pre-training on Kinetics, we freeze the features of
the encoder and train a linear classifier on top of the last
layer features (e.g. pool5 in Table 17). For all ablations in
the paper the classifier is trained for 60 epochs (using 100
epochs will increase accuracy by ∼0.2%) using the same

stage kernels output sizes T×S2

raw clip - Tτ×2242

data layer stride τ , 12 T×2242

conv1
1×72, 64

T×1122stride 1, 22

pool1
1×32 max

T×562stride 1, 22

res2

 1×12, 64
1×32, 64

1×12, 256

×3 T×562

res3

 1×12, 128
1×32, 128
1×12, 512

×4 T×282

res4

 3×12, 256
1×32, 256
1×12, 1024

×6 T×142

res5

 3×12, 512
1×32, 512
1×12, 2048

×3 T×72

pool5 global average pool 1×12

Table 17. R-50, Slow pathway [20]. The dimensions of kernels
are denoted by {T×S2, C} for temporal, spatial, and channel
sizes. Strides are denoted as {temporal stride, spatial stride2}.
Non-degenerate temporal filters are underlined. Residual blocks
are in brackets. Temporal pooling is only performed at the last
layer, collapsing spacetime dimensions. By default T×τ = 8×8.

cosine schedule as for pre-training (Sec. B.1) with a base
learning rate of η = 4.0 (10×higher than in pre-training),
linear warm-up in the first 8 epochs, and weight decay of 0.

Training augmentation. We use the default training aug-
mentation [20]. We randomly sample a clip (of T×τ frames)
from the full-length video and randomly crop 224×224 pix-
els from a video, or its horizontal flip, with a shorter side
randomly sampled in [256, 320] pixels.

Inference. Following common practice, in video classifica-
tion [20], we report 30-view, top-1 classification accuracy
on the Kinetics validation set. We uniformly sample 10 clips
from a video along its temporal axis. For each clip, we scale
the shorter spatial side to 256 pixels and take 3 crops of
256×256 to cover the spatial dimensions. We average the
softmax scores for prediction.

B.3. Details: AVA Action Detection

Dataset. The AVA dataset [33] has bounding box annota-
tions for spatiotemporal localization of (possibly multiple)
human actions. It has 211k training and 57k validation video
segments. We follow the standard protocol reporting mean
Average Precision (mAP) on 60 classes [33] on AVA v2.2.

Detection architecture. We exactly follow the detection
architecture in [20] to allow direct comparison of the pre-
trained models used as a backbone for the AVA task [33].
The detector is similar to Faster R-CNN [73] with minimal
modifications adapted for video. Region-of-interest (RoI)
features [26] are extracted at the last feature map of res5

(cf. Table 17) by extending a 2D proposal at a frame into a
3D RoI by replicating it along the temporal axis, followed
by application of frame-wise RoIAlign [37] and temporal
global average pooling. We set the spatial stride of res5 to
1 (instead of 2), and use a dilation of 2 for its filters [20].
This increases the spatial resolution of res5 by 2×. The RoI
features are then max-pooled and fed to a per-class sigmoid
classifier for prediction.

Training. For direct comparison, the training procedure and
hyper-parameters for AVA follow [20] without modification.
The network weights are initialized from the Kinetics models
and we use step-wise learning rate decay, that is reduced by
10× after 16, 24 and 28 epochs. We train for 32 epochs on
∼211k data, with linear warm-up [30] for the first 5 epochs
and use a weight decay of 10−7, as in [20]. For 8 GPU
training, we use a batch-size of 64, a learning rate of 0.05
for the supervised pre-trained Kinetics models and 0.3 for
the unsupervised ones, as this gives the best result for each
of them.

The region proposal extraction also follows [20] and is
summarized here for completeness. Our region proposals are
computed by an off-the-shelf person detector, i.e., that is not
jointly trained with the action detection models. We adopt a
person-detection model trained with Detectron [25]. It is a
Faster R-CNN with a ResNeXt-101-FPN [92, 55] backbone.
It is pre-trained on ImageNet and the COCO human keypoint
images [56]. We fine-tune this detector on AVA for person
(actor) detection. The person detector produces 93.9 AP@50
on the AVA validation set. Then, the region proposals for
action detection are detected person boxes with a confidence
of > 0.8, which has a recall of 91.1% and a precision of
90.7% for the person class.

Inference. We perform inference on a single clip with
8 frames sampled with stride 8 centered at the frame that is
to be evaluated.

B.4. Details: Charades Action Classification

Dataset. Charades [76] has ∼9.8k training videos and 1.8k
validation videos in 157 classes in a multi-label classification
setting of longer activities spanning ∼30 seconds on average.
Performance is measured in mean Average Precision (mAP).

Training. For Charades, we fine-tune the Kinetics models,
but extend their duration by 2× (T×τ = 16×8) to account for
the long-term nature of the dataset. This increase accuracy
of all models by ∼3 mAP. Our training augmentation is the
same as as in §B.2. A per-class sigmoid output is used for
mutli-class prediction. We train for 60 epochs using a batch
size of 64 and a base learning rate of 0.2 (for 8 GPUs) with
10× step-wise decay at epoch 40 and 50, after warm-up in
the first 5 epochs. We use weight decay of 10-4 and dropout
of 0.5. Other training details are analogous to Kinetics.

Inference. This is as for Kinetics (§B.2), but to infer the
actions over a single video, we spatiotemporally max-pool
prediction scores in testing [20].

B.5. Details: Something-Something V2 (SSv2)

Dataset. The Something-Something V2 dataset [31] con-
tains 169k training, and 25k validation videos. The videos
show human-object interactions to be classified into 174
classes. We report top-1 accuracy on the validation set.

Training. We fine-tune the pre-trained Kinetics models. We
train for 22 epochs using a batch size of 64 and a base
learning rate of 0.12 (for 8 GPUs) with 10× step-wise decay
at epoch 14 and 18. Weight decay is set to 10−6 and dropout
0.5. Our training augmentation is the same as in §B.2, but as
Something-Something V2 requires distinguishing between
directions, we disable random flipping during training. We
use segment-based input frame sampling [54] that splits each
video into segments, and from each of them, we sample one
frame to form a clip.

Inference. We perform single center clip testing to form
predictions over a single video.

B.6. Details: UCF-101 Action Classification

Dataset. UCF101 [78] has 13320 human action videos in
101 categories. Our ablations are performed on the first
train/val split, and for the comparison to prior work we
report the mean average accuracy over the three splits.

Training. We fine-tune the pre-trained Kinetics models and
use the same augmentation as for Kinetics. We train for 200
epochs using a batch size of 64 and a base learning rate of
0.025 (for 8 GPUs) with 10× step-wise decay at epoch 60,
120 and 180. Weight decay is set to 0 and dropout to 0.8.

Inference. We use the same procedure as in Kinetics (§B.2).

B.7. Details: HMDB-51 Action Classification

Dataset. HMDB51 [50] contains 6766 videos that have
been annotated for 51 actions. Our evaluation follows the
protocol for UCF101.

Training and Inference. Our settings are identical to the
ones used for UCF101 and we expect further tuning of hyper-
parameters to increase its downstream performance.

References
[1] Pulkit Agrawal, João Carreira, and Jitendra Malik. Learning

to see by moving. In Proc. ICCV, pages 37–45. IEEE, 2015.
2

[2] Jean-Baptiste Alayrac, Adrià Recasens, Rosalia Schneider,
Relja Arandjelović, Jason Ramapuram, Jeffrey De Fauw, Lu-
cas Smaira, Sander Dieleman, and Andrew Zisserman. Self-
supervised multimodal versatile networks. Advances in Neu-
ral Information Processing Systems, 33, 2020. 2, 8

[3] Humam Alwassel, Dhruv Mahajan, Lorenzo Torresani,
Bernard Ghanem, and Du Tran. Self-supervised learning
by cross-modal audio-video clustering. NeurIPS, 2020. 2, 8

[4] Relja Arandjelović and Andrew Zisserman. Look, listen and
learn. In Proc. ICCV, 2017. 2

[5] Relja Arandjelović and Andrew Zisserman. Objects that
sound. In Proc. ECCV, 2018. 2

[6] Suzanna Becker. Learning temporally persistent hierarchical
representations. In NeurIPS, 1997. 2

[7] Sagie Benaim, Ariel Ephrat, Oran Lang, Inbar Mosseri,
William T. Freeman, Michael Rubinstein, Michal Irani, and
Tali Dekel. SpeedNet: Learning the Speediness in Videos. In
Proc. CVPR, 2020. 8

[8] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and
Matthijs Douze. Deep clustering for unsupervised learning of
visual features. In Proc. ECCV, 2018. 2, 8

[9] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal,
Piotr Bojanowski, and Armand Joulin. Unsupervised learning
of visual features by contrasting cluster assignments. arXiv
preprint arXiv:2006.09882, 2020. 1, 2, 3, 4, 7, 14, 15

[10] Joao Carreira, Eric Noland, Andras Banki-Horvath, Chloe
Hillier, and Andrew Zisserman. A short note about kinetics-
600. arXiv preprint arXiv:1808.01340, 2018. 12, 15

[11] João Carreira, Eric Noland, Chloe Hillier, and Andrew Zisser-
man. A short note on the kinetics-700 human action dataset.
arXiv preprint arXiv:1907.06987, 2019. 12, 15

[12] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. arXiv preprint arXiv:2002.05709,
2020. 1, 2, 3, 4, 6, 7, 14, 15

[13] Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad
Norouzi, and Geoffrey E Hinton. Big self-supervised models
are strong semi-supervised learners. Advances in Neural
Information Processing Systems, 33, 2020. 14

[14] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Im-
proved baselines with momentum contrastive learning. arXiv
preprint arXiv:2003.04297, 2020. 6, 14, 15

[15] Marco Cuturi. Sinkhorn distances: Lightspeed computation
of optimal transport. In NeurIPS, 2013. 15

[16] Ali Diba, Vivek Sharma, Luc Van Gool, and Rainer Stiefelha-
gen. DynamoNet: Dynamic Action and Motion Network. In
Proc. ICCV, 2019. 2

[17] Carl Doersch, Abhinav Gupta, and Alexei Efros. Unsuper-
vised visual representation learning by context prediction. In
Proc. ICCV, 2015. 2

[18] A. Dosovitskiy, P. Fischer, J. T. Springenberg, M. Riedmiller,
and T. Brox. Discriminative unsupervised feature learning
with exemplar convolutional neural networks. IEEE PAMI,
38(9):1734–1747, Sept 2016. 1, 2

[19] Haoqi Fan, Yanghao Li, Bo Xiong, Wan-Yen Lo, and
Christoph Feichtenhofer. PySlowFast. https://github.
com/facebookresearch/slowfast, 2020. 5

[20] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and
Kaiming He. SlowFast Networks for Video Recognition.
In Proc. ICCV, 2019. 2, 4, 5, 7, 8, 15, 16

[21] Basura Fernando, Hakan Bilen, Efstratios Gavves, and
Stephen Gould. Self-supervised video representation learning
with odd-one-out networks. In Proc. ICCV, 2017. 2

[22] Chuang Gan, Boqing Gong, Kun Liu, Hao Su, and Leonidas J
Guibas. Geometry guided convolutional neural networks for
self-supervised video representation learning. In Proc. CVPR,
2018. 2

[23] Jort F Gemmeke, Daniel PW Ellis, Dylan Freedman, Aren
Jansen, Wade Lawrence, R Channing Moore, Manoj Plakal,
and Marvin Ritter. Audio set: An ontology and human-labeled
dataset for audio events. In IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2017.
8

[24] Deepti Ghadiyaram, Matt Feiszli, Du Tran, Xueting Yan,
Heng Wang, and Dhruv Mahajan. Large-scale weakly-
supervised pre-training for video action recognition. In Proc.
CVPR, 2019. 4, 5, 8, 12

[25] Ross Girshick, Ilija Radosavovic, Georgia Gkioxari, Piotr
Dollár, and Kaiming He. Detectron. https://github.
com/facebookresearch/detectron, 2018. 16

[26] R. B. Girshick. Fast R-CNN. In Proc. ICCV, 2015. 15
[27] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep

sparse rectifier neural networks. In Proceedings of the Four-
teenth International Conference on Artificial Intelligence and
Statistics, pages 315–323, 2011. 14

[28] Daniel Gordon, Kiana Ehsani, Dieter Fox, and Ali Farhadi.
Watching the world go by: Representation learning from
unlabeled videos. arXiv preprint arXiv:2003.07990, 2020. 2

[29] Ross Goroshin, Joan Bruna, Jonathan Tompson, David Eigen,
and Yann LeCun. Unsupervised learning of spatiotemporally
coherent metrics. In Proc. ICCV, 2015. 2

[30] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noord-
huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,
Yangqing Jia, and Kaiming He. Accurate, large minibatch
SGD: training ImageNet in 1 hour. arXiv:1706.02677, 2017.
16

[31] Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michal-
ski, Joanna Materzynska, Susanne Westphal, Heuna Kim,
Valentin Haenel, Ingo Fruend, Peter Yianilos, Moritz Mueller-
Freitag, et al. The “Something Something” video database
for learning and evaluating visual common sense. In ICCV,
2017. 1, 4, 7, 16

[32] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin
Tallec, Pierre H. Richemond, Elena Buchatskaya, Carl Do-
ersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Moham-
mad Gheshlaghi Azar, Bilal Piot, Koray Kavukcuoglu, Rémi
Munos, and Michal Valko. Bootstrap your own latent: A new
approach to self-supervised learning. In NeurIPS, 2020. 1, 2,
3, 4, 7, 13, 14

[33] Chunhui Gu, Chen Sun, David A. Ross, Carl Vondrick, Car-
oline Pantofaru, Yeqing Li, Sudheendra Vijayanarasimhan,
George Toderici, Susanna Ricco, Rahul Sukthankar, Cordelia
Schmid, and Jitendra Malik. AVA: A video dataset of spatio-
temporally localized atomic visual actions. In Proc. CVPR,
2018. 1, 4, 7, 15

[34] Tengda Han, Weidi Xie, and Andrew Zisserman. Video rep-
resentation learning by dense predictive coding. In Workshop
on Large Scale Holistic Video Understanding, ICCV, 2019. 2

[35] Tengda Han, Weidi Xie, and Andrew Zisserman. Self-
supervised co-training for video representation learning. In
NeurIPS, 2020. 2, 8

https://github.com/facebookresearch/slowfast
https://github.com/facebookresearch/slowfast
https://github.com/facebookresearch/detectron
https://github.com/facebookresearch/detectron

[36] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual rep-
resentation learning. In Proc. CVPR, 2020. 1, 2, 3, 4, 7, 14,
15

[37] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask R-CNN. In Proc. ICCV, 2017. 16

[38] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. arXiv preprint
arXiv:1512.03385, 2015. 14

[39] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proc. CVPR,
2016. 2, 4, 5, 7, 15

[40] Olivier J. Hénaff, Ali Razavi, Carl Doersch, S. M. Ali Es-
lami, and Aäron van den Oord. Data-efficient image recog-
nition with contrastive predictive coding. arXiv preprint
arXiv:1905.09272, 2019. 2

[41] R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon,
Karan Grewal, Phil Bachman, Adam Trischler, and Yoshua
Bengio. Learning deep representations by mutual information
estimation and maximization. In Proc. ICLR, 2019. 2

[42] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In
Proc. ICML, 2015. 13, 14

[43] Phillip Isola, Daniel Zoran, Dilip Krishnan, and Edward H
Adelson. Learning visual groups from co-occurrences in
space and time. In Proc. ICLR, 2015. 2

[44] Dinesh Jayaraman and Kristen Grauman. Learning image
representations tied to ego-motion. In Proc. ICCV, 2015. 2

[45] Simon Jenni, Givi Meishvili, and Paolo Favaro. Video repre-
sentation learning by recognizing temporal transformations.
arXiv preprint arXiv:2007.10730, 2020. 2

[46] Xu Ji, João F. Henriques, and Andrea Vedaldi. Invariant
information clustering for unsupervised image classification
and segmentation. In Proc. ICCV, pages 9865–9874, 2019. 2

[47] Will Kay, João Carreira, Karen Simonyan, Brian Zhang,
Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola,
Tim Green, Trevor Back, Paul Natsev, Mustafa Suleyman,
and Andrew Zisserman. The kinetics human action video
dataset. arXiv preprint arXiv:1705.06950, 2017. 1, 2, 3, 4, 15

[48] Dahun Kim, Donghyeon Cho, and In So Kweon. Self-
supervised video representation learning with space-time cu-
bic puzzles. In AAAI, 2019. 2

[49] Bruno Korbar, Du Tran, and Lorenzo Torresani. Coopera-
tive learning of audio and video models from self-supervised
synchronization. In NeurIPS, 2018. 2

[50] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre.
HMDB: A large video database for human motion recognition.
In Proc. ICCV, pages 2556–2563, 2011. 2, 4, 16

[51] Hsin-Ying Lee, Jia-Bin Huang, Maneesh Singh, and Ming-
Hsuan Yang. Unsupervised representation learning by sorting
sequence. In Proc. ICCV, 2017. 2

[52] Ang Li, Meghana Thotakuri, David A Ross, João Carreira,
Alexander Vostrikov, and Andrew Zisserman. The ava-
kinetics localized human actions video dataset. arXiv preprint
arXiv:2005.00214, 2020. 7

[53] Tianhao Li and Limin Wang. Learning spatiotemporal fea-
tures via video and text pair discrimination. arXiv preprint
arXiv:2001.05691, 2020. 2

[54] Ji Lin, Chuang Gan, and Song Han. Temporal shift module
for efficient video understanding. In ICCV, 2019. 16

[55] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyramid
networks for object detection. In Proc. CVPR, 2017. 16

[56] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft COCO: Common objects in context. In
Proc. ECCV, 2014. 16

[57] Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient
descent with warm restarts. arXiv:1608.03983, 2016. 14

[58] William Lotter, Gabriel Kreiman, and David Cox. Deep pre-
dictive coding networks for video prediction and unsupervised
learning. In Proc. ICLR, 2017. 2

[59] Michael Mathieu, Camille Couprie, and Yann LeCun. Deep
multi-scale video prediction beyond mean square error. In
ICLR, 2016. 2

[60] Antoine Miech, Dimitri Zhukov, Jean-Baptiste Alayrac,
Makarand Tapaswi, Ivan Laptev, and Josef Sivic. Howto100m:
Learning a text-video embedding by watching hundred mil-
lion narrated video clips. In Proc. CVPR, 2019. 8

[61] Ishan Misra, C. Lawrence Zitnick, and Martial Hebert. Shuf-
fle and learn: Unsupervised learning using temporal order
verification. In Proc. ECCV, 2016. 2

[62] Hossein Mobahi, Ronan Collobert, and Jason Weston. Deep
learning from temporal coherence in video. In Proc. ICML,
pages 737–744, 2009. 2

[63] Pedro Morgado, Nuno Vasconcelos, and Ishan Misra. Audio-
visual instance discrimination with cross-modal agreement.
arXiv preprint arXiv:2004.12943, 2020. 2

[64] V. Nair and G. E. Hinton. Rectified linear units improve
restricted boltzmann machines. In Proc. ICML, 2010. 14

[65] Mehdi Noroozi and Paolo Favaro. Unsupervised learning of
visual representations by solving jigsaw puzzles. In Proc.
ECCV, pages 69–84. Springer, 2016. 2

[66] Andrew Owens, Phillip Isola, Josh H. McDermott, Antonio
Torralba, Edward H. Adelson, and William T. Freeman. Vi-
sually indicated sounds. In Proc. CVPR, pages 2405–2413,
2016. 2

[67] Deepak Pathak, Ross Girshick, Piotr Dollár, Trevor Darrell,
and Bharath Hariharan. Learning features by watching objects
move. In Proc. CVPR, 2017. 2

[68] Deepak Pathak, Philipp Krähenbühl, Jeff Donahue, Trevor
Darrell, and Alexei A. Efros. Context encoders: Feature
learning by inpainting. In Proc. CVPR, 2016. 2

[69] Mandela Patrick, Yuki M. Asano, Ruth Fong, João F. Hen-
riques, Geoffrey Zweig, and Andrea Vedaldi. Multi-modal
self-supervision from generalized data transformations. arXiv
preprint arXiv:2003.04298, 2020. 2, 8

[70] AJ Piergiovanni, Anelia Angelova, and Michael S. Ryoo.
Evolving losses for unsupervised video representation learn-
ing. In Proc. CVPR, 2020. 2

[71] Senthil Purushwalkam and Abhinav Gupta. Demystifying
contrastive self-supervised learning: Invariances, augmenta-
tions and dataset biases. arXiv preprint arXiv:2007.13916,
2020. 2

[72] Rui Qian, Tianjian Meng, Boqing Gong, Ming-Hsuan Yang,
Huisheng Wang, Serge Belongie, and Yin Cui. Spatiotempo-
ral contrastive video representation learning. arXiv preprint
arXiv:2008.03800, 2020. 2, 8

[73] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN:
Towards real-time object detection with region proposal net-
works. In NeurIPS, 2016. 15

[74] Pierre H Richemond, Jean-Bastien Grill, Florent Altché,
Corentin Tallec, Florian Strub, Andrew Brock, Samuel Smith,
Soham De, Razvan Pascanu, Bilal Piot, et al. Byol works even
without batch statistics. arXiv preprint arXiv:2010.10241,
2020. 13

[75] Pierre Sermanet et al. Time-contrastive networks: Self-
supervised learning from video. In Proc. Intl. Conf. on
Robotics and Automation, 2018. 2

[76] Gunnar A Sigurdsson, Gül Varol, Xiaolong Wang, Ali
Farhadi, Ivan Laptev, and Abhinav Gupta. Hollywood in
homes: Crowdsourcing data collection for activity under-
standing. In ECCV, 2016. 1, 4, 7, 16

[77] Karen Simonyan and Andrew Zisserman. Very deep
convolutional networks for large-scale image recognition. In
International Conference on Learning Representations, 2015.
7, 15

[78] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah.
UCF101: A dataset of 101 human actions classes from videos
in the wild. arXiv preprint arXiv:1212.0402, 2012. 2, 4, 16

[79] N. Srivastava, E. Mansimov, and R. Salakhudinov. Unsuper-
vised learning of video representations using lstms. In Proc.
ICML, 2015. 2

[80] Chen Sun, Fabien Baradel, Kevin Murphy, and Cordelia
Schmid. Contrastive bidirectional transformer for tempo-
ral representation learning. arXiv preprint arXiv:1906.05743,
2019. 2

[81] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going deeper with
convolutions. In Proc. CVPR, 2015. 7, 15

[82] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive
multiview coding. In Proc. ECCV, 2020. 2

[83] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann
LeCun, and Manohar Paluri. A closer look at spatiotemporal
convolutions for action recognition. In Proc. CVPR, 2018. 5

[84] Aäron van den Oord, Yazhe Li, and Oriol Vinyals. Repre-
sentation learning with contrastive predictive coding. arXiv
preprint arXiv:1807.03748, 2018. 2, 3

[85] Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. An-
ticipating visual representations from unlabelled video. In
Proc. CVPR, 2016. 2

[86] Xiaolong Wang and Abhinav Gupta. Unsupervised learning
of visual representations using videos. In Proc. ICCV, 2015.
2

[87] Xiaolong Wang, Kaiming He, and Abhinav Gupta. Transitive
invariance for self-supervised visual representation learning.
In Proc. ICCV, 2017. 2

[88] Xiaolong Wang, Allan Jabri, and Alexei A. Efros. Learning
correspondence from the cycle-consistency of time. In Proc.
CVPR, 2019. 2

[89] Laurenz Wiskott and Terrence Sejnowski. Slow feature anal-
ysis: Unsupervised learning of invariances. In Neural Com-
putation, 2002. 2, 5

[90] Zhirong Wu, Yuanjun Xiong, Stella Yu, and Dahua Lin. Un-
supervised feature learning via non-parametric instance-level
discrimination. In Proc. CVPR, volume abs/1805.01978,
2018. 1, 2

[91] Saining Xie, Chen Sun, Jonathan Huang, Zhuowen Tu, and
Kevin Murphy. Rethinking spatiotemporal feature learning
for video understanding. In Proc. ECCV, 2018. 5

[92] Weidi Xie. Deep Neural Networks in Computer Vision and
Biomedical Image Analysis. PhD thesis, University of Oxford,
2017. 16

[93] Dejing Xu, Jun Xiao, Zhou Zhao, Jian Shao, Di Xie, and
Yueting Zhuang. Self-supervised spatiotemporal learning via
video clip order prediction. In Proc. CVPR, 2019. 2

[94] Ceyuan Yang, Yinghao Xu, Bo Dai, and Bolei Zhou. Video
representation learning with visual tempo consistency. arXiv
preprint arXiv:2006.15489, 2020. 2, 8

[95] Yang You, Igor Gitman, and Boris Ginsburg. Large
batch training of convolutional networks. arXiv preprint
arXiv:1708.03888, 2017. 13, 14

[96] Richard Zhang, Phillip Isola, and Alexei A. Efros. Colorful
image colorization. In Proc. ECCV, 2016. 2

[97] Chengxu Zhuang, Alex Lin Zhai, and Daniel Yamins. Local
aggregation for unsupervised learning of visual embeddings.
In Proc. ICCV, 2019. 2

