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a) Samples of Kinetices-400

b) Samples of UCF-Crime

Figure 1: Samples of action recognition dataset Kinetics-
400 [4] and video anomaly dataset UCF-Crime [7]. The red
boxes are the anomalous regions in frames and their corre-
sponding enlarged images.

1. Comparisons of Action Recognition Datasets
and Anomaly Detection Datasets

As Figure 1 shown, the samples from Kinetics-400 [4]
are actor-centered while the samples from UCF-Crime [7]
are not [1, 2]. Additionally, the anomalies in frames are
usually small and low-resolution. These situations indicate
the domain gap between the two kinds of datasets. In this
work, we propose MIST to minimize the domain gap by
training both feature encoder and classifier in a two stage
self-training scheme.
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Figure 2: The effect of T for a fixed number of sub-bag 32
on ShanghaiTech dataset with I3DRGB features.

2. Details of Pseudo Label Generation

2.1. Feature Extraction and Sampling

We deploy a vanilla feature encoder, i.e. C3D [8] pre-
trained on Sport-1M [3] or I3D pretrained on Kinetics-400
[4] to extract features for generator training. We densely
sample 16 frames per clip most of the times but 12 frames
per clip for I3D on UCF-Crime. After extracting the fea-
tures, sparse continuous sampling is applied to sample the
L · T clips to form bags of features B. Then, LMIL is de-
ployed to optimize the generator. Specifically, we follow
[7] to select L = 32. As for T , we choose T = 3 for
UCF-Crime and T = 7 for ShanghaiTech. We have shown
the selection of K on ShanghaiTech with I3DRGB features
in Figure 2. Additionally, λ is set as 0.01. 40 normal and
40 abnormal videos are randomly sampled as a batch when
training.
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Figure 3: Variations of AUC for different values of multiple
detector K with C3D on UCF-Crime dataset. The dotted
line is the result of MIST training without self-guided at-
tention module.

2.2. Pseudo Label Refinement

The trained generator predicts clip-level scores Sa =
{sai }Ni=1 for all abnormal videos in the training set. Tem-
poral moving average filter with kernel size k = 5 and
min-max normalization are deployed to refine the anomaly
scores into Ŷ = {ŷai }Ni=1.

3. Details of Feature Encoder Finetuning
3.1. Implementation of Self-Guided Attention Mod-

ule

As shown in Figure 4 of the submission, our proposed
self-guided attention module includes 3 encoding units,
namely F1, F2, F3. All of these encoding units are con-
structed by convolutional layers. Let C represents the num-
ber of channel ofMb−4. F1 consists of a 3 × 3 × 3 × C
3DConv layer with the stride of 2 and a 1 × 1 × 1 × 2K
3DConv layer, which are both activated by ReLU function;
F2 is a 1 × 1 × 1 × 1 3DConv layer activated by Sigmoid
function; F3 is a 1 × 1 × 1 × 2K 3DConv layer. Then, the
attention map A is calculated as follows:

A = F2(F1(Mb−4)), (1)

while the guided classification prediction p̂ is an aggrega-
tion results fromM, which is calculated below:

M = F3(F1(Mb−4)). (2)

Specifically, p̂ is transformed fromM via spatiaotemporal
average pooling Π and class-specific channel-wise average
pooling Φ:

p̂ = Φ(Π(M)), (3)

which is further optimized by L2 to guide the optimization
of class-wise discriminative feature map M∗

b−4 and then
strengthen the attention map generation indirectly.

3.2. Implementation of ESGA Finetuning

For UCF-Crime, we sample 16 abnormal videos and 16
normal videos per batch, and uniformly sample 3 clips from
each video. For ShanghaiTech, we sample 10 abnormal
videos and 10 normal videos per batch. The training pro-
cess finishes in 300 epochs. Specifically, at the begining
of finetuning, we conduct warm-up for 5 epochs. Since
only a few clips of the abnormal video are anomalous, there
exists a class-imbalance problem, especially for I3D. We
introduce class-reweighting to cross-entropy loss as class-
weighted cross-entropy loss Lw:

Lw = −w0ylogp− w1(1− y)log(1− p), (4)

wherew0 andw1 are class weights for abnormal and normal
class, respectively. Specifically, L1 and L2 are adopted the
same kind of loss function Lw We adopt w0 = 1.2 and
w1 = 0.8 for UCF-Crime, while w0 = 0.8 and w1 = 0.65
for ShanghaiTech.

In the left of Figure 3, we report the AUC of STSA with
different K. The performance goes up as the K get larger
and reaches the top with K of 8 or 16. When the value get-
ting even larger, it seems to be overfitting and get worse.
Considering a trade-off between the efficiency with effec-
tiveness, we set K = 8 in our framework for all other ex-
periments.

After finetuning, we acquire a task-specific feature en-
coder ESGA. ESGA outperforms state-of-the-art encoder-
based method Zhong et al. [11], which is shown in Figure
4 in detail. Moreover, ESGA can focus on the anomalous
regions in frames, which is shown in Figure 5. As the left 5
columns of the figure shown, self-guided attention module
help the feature encoder in focusing the anomalous regions.
We have also listed the failure on the right 2 columns of the
figure, the results from too small size of anomaly regions.

4. More Experimental Results
4.1. Speed and Computational Complexity

Model #Params Speed (FPS) FLOPs (MAC)
MIST-I3D 31M 324.46 45.68G
MIST-C3D 85M 197.10 39.26G

Zhong-C3D[11] 78M 130.04 386.2G

Table 1: Speed and computational complexity comparisons
with Zhong et al. [11].

There are four 1080Ti GPUs for stage 2 but one 1080Ti
GPU for stage 1 and validation. In C3D (I3D) based model,
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Figure 4: Quantitative Comparisons with state-of-the-art encoder-based method Zhong et al. [11] on UCF-Crime and Shang-
haiTech.

Arrest007

Origin 
Frames

MIST
w/o 𝑯𝒈

MIST

MIST
w/o 

SGA

Arrest001 Vandalism015 Assault010Burglary032 Shoplifting001 Shooting015

Figure 5: More spatial anomaly activation maps visualization on UCF-Crime. The left 5 columns of the graphs are the
successful results while the right 2 columns are the failures. The red boxes are the ground-truth spatial annotations [5].

#Params are 85 M (31 M), the FLOPs are 39.26 G (45.68
G) and the speed is 197.10 FPS (324.46 FPS). Compared to
Zhong et al. that adopt 10-crop testing time augmentation,
our method is much faster but costs much lower computa-
tional complexity as shown in Table 1.

4.2. More Quantitative Comparisons

We show more quantitative comparisons with Zhong et
al. [11] on UCF-Crime and ShanghaiTech on Figure 4. We
observe a huge improvement in ShanghaiTech. As for UCF-
Crime our method still do much better when compared
fairly without using 10-Crop. Moreover, our method does



much better on iter 1 as MIST does not need iterative opti-
mization.

4.3. More Spatial Visualization

We also present more spatial visualization in Figure 5.
We observe that MIST performs better than those without
SGA or Hg . The left two columns are the failure case
where the front ground is extremely small and vague to be
detected.

5. Discussions of the Formulation
5.1. Label Noise Learning vs MIST

Zhong et al. [11] treats weakly supervised video
anomaly detection as a label noise learning task. However,
the extreme label noise results from assigning video-level
labels to each clip. In contrast, MIST offers pseudo labels
with lower noise via multiple instance generator, which is
more efficient. Additionally, MIST can further co-operate
with label noise learning methods to refine pseudo labels
iteratively and train a more powerful feature encoder.

Model Before (%) After (%) Gain(%)
MIST-C3D 58.66 67.14 +8.48
MIST-I3D 63.63 73.37 +9.74

Table 2: Performance comparisons of before and after
refinement on ShanghaiTech in term of AUC scores of
anomaly videos.

In contrast to Zhong et al. that reduces the noise via a
specific module, i.e. GCN-based label noise cleaner, we re-
sist label noise via post procession likes min-max norm and
temporal smoothing. As shown in Table 2, we conduct these
two types of refinement are do a great help in removing la-
bel noise. Moreover, we also use large a batch size with the
help of gradient accumulation to reduce the label noise [6].

5.2. 2D Feature Encoder vs 3D Feature Encoder

We also conduct experiment on 2D feature encoder the
RGB branch of TSN [10] but fail. Similar result is also
reported in [5]. Since the RGB branch of TSN operates only
on a single frame, it fails in catching the motion to represent
temporal information. Instead, we deploy two popular 3D
spatiotemporal feature encoders, i.e. C3D and I3D, whose
results well-verified the capacity of MIST.

5.3. Fine-Grained vs Coarse-Grained and Online vs
Offline

Our method focuses on online fine-grained anomaly de-
tection. Previous works follow Sultani et al. [7] to perform
anomaly detection in a coarse-grained manner. However,

in the real world, we expect anomaly detection can be ap-
plied for streaming surveillance videos to detect anomalies
precisely and quickly, while the methods in coarse-grained
do not meet the requirement. Some work like Ullah et al.
[9] performs anomaly detection in an offline manner based
on an external assumption as complete observation of the
testing videos. As discussed above, it also violates the ex-
pectation for detection on streaming video.
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