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A. Details on Method and Implementation
A.1. Algorithm

Here we detail the different algorithms used in the abla-
tion. Algorithm 1 shows how the density of a single frame
is reconstructed. This variant corresponds to the single ver-
sion using the single pass of Section 4. The forward recon-
struction is summarized in Algorithm 2; it uses the density
reconstruction of Algorithm 1. In Algorithm 3 we depict
the coupling (C) over time, and Algorithm 4 shows our full
method with global transport optimization global transport
(Glob-Trans).

Algorithm 1: Update Steps

1 Function UpdateDensity(ρ,Lρ):
2 L← BuildLighting(ρ, lights);
3 Îc ← R(ρ,L, c);
4 ∇ρ← ∂Lρ/∂ρ;
5 Update ρ with∇ρ using Adam;
6 ρ← max(ρ, 0); //clip negative density

7 Function UpdateVelocity(ρ,Lu):
8 ∇u← ∂Lu/∂u;
9 Update u with∇u using Adam;

10 Function UpdateDiscriminator(ρ):
11 Ir ∼ R;
12 f ∼ Ω; //sample random views
13 Îf ← R(ρ,L, f);
14 Îh ∼ history;
15 history← history ◦ Îf ;
16 Îf ← Îf ◦ Îh;
17 Update ΘD with ∂LD(ρ, 1)/∂ΘD;

//Equation (11)

A.2. Discriminator

Our discriminator D has a fully convolutional architec-
ture with 14 convolution layers (filters, strides): (8,1) (16,2)
(16,1) (24,2) (24,1) (32,2) (32,1) (32,1) (64,2) (64,1) (64,1)
(16,1) (4,1) (1,1). All layers use a filter size of 4 × 4 and
are followed by LReLU activations, with leak of 0.2. We
use SAME padding, but instead of padding with zeros we
use the mirrored input to avoid issues described in [31]. For
data augmentation we apply random crop, scale, rotation,
intensity and gamma scale. We keep a history of rendered

Algorithm 2: Forward Pass

1 Function OptimizeDensity(ρ):
2 for n do
3 UpdateDensity(ρ,Ltar);

4 Function
OptimizeVelocity(u, ρfrom, ρto, nMS):

5 for i = 0 to n do
6 if i ∈ nMS then
7 u← ResizeGrid(u);

8 UpdateVelocity(u,LA(ρ) + Ldiv);

9 Function ReconstructForward({ρ}, {u}):
10 ρ0 ←H0 · c ;
11 u0 ←H1· rand;
12 OptimizeDensity(ρ0); //Algorithm 1
13 ρ1 ← ρ0;
14 OptimizeDensity(ρ1);
15 OptimizeVelocity(u0, ρ0, ρ1, nMS);
16 for t = 1 to F − 1 do
17 ut ← A(ut−1,ut−1);
18 ρt+1 ← A(ρt,ut);
19 OptimizeDensity(ρt+1);
20 OptimizeVelocity(ut, ρt, ρt+1, ∅);

21 uF−1 ← A(uF−2,uF−2);

Algorithm 3: Coupled Optimization

1 ReconstructForward({ρ}, {u});
2 for i = 0 to n do
3 for t = 0 to F do
4 UpdateDensity(ρt,Ltar +LA(ρ) +LD);
5 UpdateVelocity(u,LA(ρ) + LA(u) +

Ldiv);

6 if useDisciminator then
7 UpdateDiscriminator({ρ});

fake samples Îf to reuse as additional fake samples later for
training the discriminator which improves the quality of the
reconstruction and reduces rendering operations. The batch
size for each discriminator or density update is 8 real sam-
ples and 4 rendered fake samples, with 4 additional fake
samples from the history when training the discriminator.
The ’average’ formulation of the relativistic GAN [34] al-
lows to use different resolutions and batch sizes for real and
fake samples, while the least-squares variant gives empiri-
cally better results in our case. We also use an L2 regular-
ization for the weights of the discriminator ΘD.



Algorithm 4: Full Method

1 ReconstructForward({ρ̃}, {u});
2 ρ0 ← ρ̃0;
3 for i = 0 to n do
4 if i ∈ nMS then
5 ρ0 ← ResizeGrid(ρ0);
6 for t = 0 to F do
7 ut ← ResizeGrid(ut);

8 // build sequence from first frame ρ0

9 for t = 1 to F do
10 ρt ← A(ρt−1,ut−1);

11 ∇ρFA ← 0; // init gradient EMA
12 for t = F − 1 to −1 do
13 ∇ρt ← ∂Lρ(ρt)/∂ρt;
14 ∇ρtA ← ∂A(ρt,ut)/∂ρt · ∇ρt+1

A ;
15 if t == 0 then
16 Update ρt with∇ρt + λρA∇ρtA;

17 ∇utA ← ∂A(ρt,ut)/∂ut · ∇ρt+1
A ;

18 Update ut with∇ut + λuA∇utA;
19 ∇ρtA ← β ∗ ∇ρtA + (1− β) ∗ ∇ρt;
20 if useDisciminator then
21 UpdateDiscriminator({ρ});

A.3. Differentiable Warping

For the discretized operator A we use a second-order
transport scheme in order to preserve small-scale content
on the warped fields [65]. This MacCormack advection is
based on Semi-Langrangian advection ASL, where the ad-
vected quantity st+1 at position ~x is the tri-linear interpo-
lation of st at ~x − ~u ∗ ∆t. With this, the MacCormack-
advection is defined as

ŝt+1 := ASL(st,ut),

ŝt := ASL(ŝt+1,−ut),
st+1 := ŝt+1 + 0.5(st − ŝt).

(13)

However, we use a variant that reverts to ASL when the
corrected term st+1 would exceed the values used for inter-
polation in the first ASL:

st+1 :=

{
st+1 if ŝt+1

min ≤ st+1 ≤ ŝt+1
max

ŝt+1 else
. (14)

This reversion is necessary as the un-clamped MacCormack
correction causes issues like negative density and escalating
inflow from the open boundaries. The result is smoother
than the one obtained without clamping, but still more de-
tailed than ASL.

The advected generic quantity s can be both ρ and u,
in case of u the components are handled individually and
treated as scalars.

Differentiation We implemented a differentiable SL ad-
vection as tensorflow CUDA operation. Since the MacCor-
mack advection is composed of two SL steps and a condi-
tion, its gradients are simply handled by automatic differ-
entiation. Since we optimize ρ and u, both ∂A(s,u)/∂s
and ∂A(s,u)/∂u are required. For ∂A(s,u)/∂s, the gra-
dients are just scattered to the grid positions used for the in-
terpolation in the forward step, after being multiplied with
the interpolation weights. ∂A(s,u)/∂u is A(∇s,u), i.e.,
during back-propagation the gradients are multiplied com-
ponent wise with the advected spatial gradients of the scalar
grid s.

A.3.1 Boundary Handling

We use open boundaries for both density and velocity.
Technically that means that velocities at the boundaries are
not constrained (or handled differently from the inner veloc-
ities in any way). In the advection, look-ups that fall outside
of the volume are clamped to the boundaries, thus using the
values there. Their gradients are also accumulated at the
boundaries accordingly.

A.3.2 Inflow

Inflow is only handled explicitly for the density, the velocity
has to solve all inflow via the open boundaries. As we target
rising smoke plumes we place an inflow region at the lower
end of the visual hull H , with some overlap, although it
could be composed of arbitrary regions of the volume with-
out changing the algorithm (we use a simple mask to in-
dicate inflow cells). These cells are additional degrees of
freedom and are optimized alongside the density. They are
individual for every frame, and still used when using our
global transport formulation. The advection then becomes
A(ρt + inflow,ut) = ρt+1 and is used as such in all losses
and the global transport. This is also how the inflow re-
ceives gradients. The only constraint on the inflow is that
ρt + inflow ≥ 0, meaning that the inflow itself can be
(partially) negative, and thus serve as outflow. Density can
also enter and leave the volume via the boundaries, just like
the velocity.

A.4. Differentiable Rendering

For rendering we use a discrete ray-marching scheme
that essentially replaces the integrals in Equation (8) with
discrete sums, stepping though the volume along the view-



depth (z) with a fixed step size:

Z∑
z=0

L(xz)e
−

∑xz
a=0 ρ(a), e−

∑Z
z=0 ρ(xz). (15)

To implement the single-scattered self-shadowing we
use a shadow volume, instead of casting shadow rays from
every sample point. Thus, the shadow computation is like
rendering the transparency from the point of view of the
light, but storing every z-slice to create the shadow volume.

We implement our custom ray-marching kernel and its
analytic gradient as tensorflow CUDA operation. The back-
wards pass inside this operation is what standard auto-
differentiation would yield: go backwards along the ray and
scatter gradients to the locations used for interpolation in the
forward pass.

A.4.1 Sampling Gradients

The naive back-propagation of gradients through the grid-
sampling, i.e., scattering the gradients of a sample point
to all used interpolants, weighted with the original inter-
polation weights, yields regular artifacts in the reconstruc-
tion, likely due to the regular grid sampling. Using an in-
termediate grid allows us to invert the sampling for back-
propagation with another sampling operation as in the for-
ward pass, which can then employ mip-mapping, and thus
reduces aliasing in both directions. Conceptually, this ap-
proach does not differentiate the sampling, but rather trans-
forms the volume of gradients into another space, resulting
in spatially smooth gradients. It is, however, very mem-
ory intensive as all samples have to be stored. An equiva-
lent gradient can also be obtained with scattering, by nor-
malizing the gradients with their accumulated interpolation
weights. This also avoids aliasing, as long as the rendering
resolution is large enough, and is the method we use for our
final results.

A.4.2 Comparison to Linear Image Formation

The comparisons in Figures 8 and 9 highlight the impor-
tance of the non-linear IF for visible light capturing. While
a linear model reduces densities to account for effects like
shadowing, the differentiable rendering in our optimization
yields correct gradients to recover the original density, (b)
vs. (c) in Figure 8.

A.4.3 Comparison to Path-tracer

We compare our renderer (Section 3.2) to a path-traced ref-
erence in Figure 10. Using 0 light bounces in the path-tracer
(i.e. only single-scattering shadow rays) produces results
very similar to our renderer, while the results with more
bounces (multi-scattering) change gracefully.

a) Linear IF b) Ours, Nl-IF c) Target ρ vis. d) Target view

Figure 8: Non-linear IF optimization: a linear model
“bakes” lighting into the density reconstruction (a), while
our pipeline can recover the correct density distribution (b)
via a differentiable renderer. (c,d) show target density as
visualization and with lighting, respectively.

a) recon BL b) recon LIN c) target LIN d) target LIN

Figure 9: A target rendered with a linear (LIN) IF can be re-
covered by the attenuated model (BL), as long as sufficient
lighting is provided.

Figure 10: Our renderer vs. Blender 2.91 [5] Cycles path-
tracer (128 SPP, denoised), 0 and 4 light bounces.

A.4.4 Backgrounds and Lighting Optimization

When using a black background or monochrome target im-
age there is an ambiguity between high light intensity in
conjunction with low density and lower light intensity with
more density as these two cases cannot be distinguished in
a target image. With a black background the transparency
does not matter, and with a monochrome target (with any
background) contributions from reflected light and back-
ground are indistinguishable. Using a background with a
color distinguishable from the smoke, the transparency, and
therefore density, along a ray can be determined success-



a) Black Background b) Blue Background c) Reference

Figure 11: Side view (90◦) of a density reconstructed with
black (a) and light blue RGB(0,127,255) (b) background. A
colored background helps to recover the correct density in
shadowed regions.

fully.
The reconstruction consequently yields better results

when using a colored background, as seen in Figure 11.
However, as our real target dataset [9] uses only grey-scales,
we likewise used black backgrounds for our synthetic tests.

We also experimented with optimizing the light inten-
sities (ia and ip), which worked better with colored back-
grounds. Because this adds additional degrees of freedom,
making the reconstruction harder, we ultimately determined
our light intensities empirically.

A.5. Visual Hull

For our multi-view reconstruction experiments with 5
target views, the visual hull H is constructed only from the
5 available views, as described in Section 3.4. After the
background subtraction the target images are turned into a
binary mask, using a threshold of ε = 0.04 to cut of residual
noise. These masks are slightly blurred with σ = 1 (in pix-
els) before being projected into the volume (Eq. (12)). The
hulls are then blurred again with σ = 0.5 (in cells).

To construct a visual hull from a single view, we create
4 additional, evenly spread views from the available view
by rotating it around the central y-axis (up) of the volume.
The masks created from these auxiliary views are addition-
ally mirrored at the projected rotation axis to reduce cut-
offs in the original view when constructing the volume hull
by intersection. This works well for relatively symmetric
rising plumes, but is not guaranteed to work for arbitrary
shapes. Using a visual hull to guide the densities noticeably
improves the quality of the reconstruction, but constructing
a hull for sparse or single-view reconstructions that adheres
to physically correct motion remains a topic for future work.

A.6. Multi-Scale Approach

We employ a multi-scale approach during reconstruc-
tion, increasing the grid resolution while the spatial size of
the domain stays the same. The up-sampling is done using
tri-linear interpolation. In our full method we use a scaling
factor per step of 1.2. Thus, for a reference resolution of

128 (see also Appendix B), the velocity of the first frame
is scaled 4 times (14 → 18 → 21 → 25 → 30) in the
pre-optimization, and density and velocity synchronously
in the coupled phase an additional 8 times (30 → 36 →
43 → 51 → 62 → 74 → 88 → 106 → 128). As the first
frame velocity optimization operates on a lower resolution
than the densities ρt and ρt+1 used therein, the densities
are temporarily down-sampled (with filtering) to match the
resolution of the velocity.

A.7. Gradient Descent with Global Transport

Naive automatic differentiation of a full 120 frame se-
quence via back-propagation would require a lot of mem-
ory as all intermediate results of the forward pass have to be
recorded for the backwards pass. To reduce the memory re-
quirements we split the sequence to only do automatic back-
propagation for one frame at a time. The back-propagation
between frames is handled more explicitly (see also line 19
in Algorithm 4). The result is the same, at least when us-
ing Equation (4) instead of the EMA version (Eq. (5)). We
keep all resources in (CPU) RAM, only the current frame
and intermediate steps needed for automatic differentiation
are moved to the GPU.

A.8. Hyperparameters

The hyperparameters, which can be set individually for
the first frame in the pre-pass, the remaining frames of the
pre-pass, and the main optimization, are reported in Ta-
ble 2. Some benefit from a linear ( lin−−→) or exponential
(
exp−−→) fade-in or growth. We do not use any smoothness

regularization for density or velocity.

A.9. Hardware and Runtime Statistics

We used the following hard- and software configuration
for our experiments: Hardware: CPU: Intel(R) Core(TM)
i7-6850K, GPU: Nvidia GeForce GTX 1080 Ti 11GB,
RAM: 128GB; Software (versions): Python 3.6.9, Tensor-
flow 1.12 (GPU), CUDA 9.2. We implemented custom
tensorflow operation in CUDA for rendering (ray-marching
and shading) and advection as well as their gradient opera-
tions.

For our full method, using the resolution detailed in Ap-
pendix B, we have measured an average reconstruction time
of 43 - 65 hours (∼ 30 minutes per frame, variation based on
system load) for 120 frames of single view reconstruction
from real targets with our current implementation and hard-
ware. The pre-optimization (Sec. 4) takes only 2% of the
total time. The majority of the time is spent on the density
optimization (60%, 38% of which is needed for the discrim-
inator loss and rendering the needed fake images), while
Calculating and back-propagating though the losses for u
makes up 30% of the time. The manual back-propagation



Loss \Pass Fwd first Fwd Main
Density

n 600 600 4200
nMS - - 400 × 8

ηρ 3 3 lin−−→ 1 2.4
Ltar 1.74e-5

LA(ρ) 0 0 2.7e-10 lin−−→ 5.4e-10
LD(ρ,−1) 0 0 1.5e-5

Velocity
n 6000 600 4200
nMS 1000 × 4 - 400 × 8
ηu 0.04 0.02

exp−−→ 0.016
LA(ρ) 4.1e-10

LA(u) 0 0 4e-11 lin−−→ 8e-11

Ldiv 8.6e-10
exp−−→ 2.6e-9

exp−−→ 1.7e-8

Discriminator†

ηu - - 2e-4
|ΘD|2 - - 2e-3

Table 2: Hyperparameters for the first (lines 12 and 15 in
Algorithm 2) and remaining frames of the forward recon-
struction and our coupled global transport optimization (Al-
gorithm 4). learning rate η, iterations n with multi-scale
intervals nMS with a resize factor of 1.2.

though the global transport via Equation (5) takes 4% of the
total runtime.

B. Additional Evaluation
The Reference has a grid size of 128 × 196 × 128. As

base grid size for our reconstruction we use 128×227×128,
which is cropped to the union of the AABBs of the visual
hulls of all frames plus a padding of 4 cells on all sides. For
our reconstructions the grid sizes are therefore reduced to
125×187×93, 94×186×95, 97×164×77 and 86×161×76
for synthetic multi-view, synthetic single-view, real multi-
view and real single-view for the base plume, respectively.
The spatial resolution remains the same. As lighting model
we use a single white point light with single-scattering,
hand-placed above the central camera, and white ambient
light to approximate multi-scattering. The light intensities
are ip = 0.85 and ia = 0.64, respectively.

B.1. Additional Multi-View Ablations

An extended evaluation of the motion of the synthetic
case is shown in Figure 12. The forward reconstruction re-
moves the streak-like artifacts, but does so at the expense of
spatial reconstruction accuracy regarding the metrics. The
step to coupled improves the motion it results in only mi-
nor improvements in ρ. The multi-scale approach (C-MS)
brings the metrics for ρ on-par with the single version. The
bottom row show a continuously improving transport of a
test density, compared to the reference (Figure 12 f), seen in
the resulting distribution of the density. While ScalarFlow

might appear closer to the reference it shows a mismatch
in shape at the stem and backside (right side, shown in the
detail) of the resulting plume.

An ablation of multi-view reconstructions of the SF data
is shown in Figure 14. Here, C-MS shows an unphysical
accumulations of density at the top which are resolved by
our global transport (Glob-Trans). The discriminator (Full)
has only little effect in the multi-view reconstruction, some-
times causing slight halo-artifacts, and is thus not used here.
Previous methods give a more diffuse result.

B.2. Warp Loss in Global Transport

In Figure 13 we show an additional ablation that high-
lights the effects of keeping the per-frame warp loss LA(ρ)

for both density (∂LA(ρ)/∂ρ) and velocity (∂LA(ρ)/∂u),
even when global transport (Sec. 3.1) is used. Our global
transport already provides gradients from the advection of
the density for both ρ (Eq. (5)) and u, meaning that the ex-
plicit density warping loss seems redundant for both. In
fact, since the sequence is defined via transport (Eq. (2)),
the warp loss, and therefore its gradients, should be zero.
However, since the visual hull is applied after every advec-
tion step (in the initial transport, not the warp loss), the error
stems from the parts removed by the hull. Using the hull as
a loss, instead or in addition to a hard constraint, does not
change anything about the results in Figure 13.

As visible in the figure, ∂LA(ρ)/∂ρ is still mostly redun-
dant, only in the real data case it reduces the divergence
of the reconstructed density grid (not visible in the render-
ing). However, it also has no negative influence on the re-
construction. Removing ∂LA(ρ)/∂u from the optimization
has adverse effect in the real case, resulting in visible di-
vergence in the lower part of the plume, turning the inflow
into an outflow. In the Synthetic case the reconstruction
still works well, showing only less inflow. We conjecture
that the differences between the synthetic and real cases
are caused by a mismatch of the physical model to the real
case. Using LA(ρ) puts more emphasis (gradients) on local
correctness of the transport itself. ∂LA(ρ)/∂ρ adapts the
density to fit the existing transport. However, because the
density also has to fit the observations, which have more
weight, there is no change, and thus removing these gra-
dients has no big impact. ∂LA(ρ)/∂u, on the other hand,
adapts the velocity, i.e., the transport, to fit the existing den-
sity, including the hull constraint. These results seem to
suggest that explicit adaption of the local transport to the
densities is still necessary when using the global transport.

B.3. State of the Art

We re-implemented TomoFluid (TF) in our own Frame-
work as no original source-code is publicly available as of
the time of writing. We use the loss functions and view-
interpolations as described in the original work, but the hy-



a) Single b) Forward c) C d) C-MS e) Glob-Trans f) Reference g) SF [9] h) TF [79] i) NV [45]

Figure 12: Multi-view evaluation with synthetic data: (a-e) Ablation with reference shown in (f). The different versions of
the ablation continually improve density reconstruction (top) and motion accuracy, illustrated by advecting the initial state
shown in (i) with the reconstructed velocity sequence, in the bottom row. (g-i) Comparison with previous work: ScalarFlow
[9], TomoFluid [79], and NeuralVolumes [45]. Our method in (e) yields an improved density reconstruction, in addition to a
coherent, and physical transport. Note that (i) does not produce velocities.

w/ ∂LA(ρ)/∂ρ w/o ∂LA(ρ)/∂ρ

w/
∂LA(ρ)

∂u

w/o
∂LA(ρ)

∂u

(a) Synthetic

w/ ∂LA(ρ)/∂ρ w/o ∂LA(ρ)/∂ρ

(b) Real

Figure 13: Evaluation of the influence of the density warp loss LA(ρ) when global transport is also used. The tables show
an ablation of the LA(ρ) applied to density and velocity, for both synthetic and real data. Every image shows the following
triplet: left, the final result of the optimization, obtained by advecting ρ0 with the velocity sequence and adding the inflow
in every step; the center shows the same, but without any inflow; on the right, only the inflow is advected, i.e., ρ0 is set to
all zero. The top left images are the desired results. While the gradients provided by this loss are are almost redundant in
the synthetic case (a), the gradients w.r.t. u are necessary when using real data(b), even though the same dependencies are
modeled by the global transport. Gradients w.r.t. ρ are sill redundant, but do not hurt the reconstruction either.



a) C-MS b) Glob-Trans c) Full d) SF [9] e) NV [45]

Figure 14: Multi-views (5 targets) reconstruction with data
from [9]. Top: perspective density from a 90◦ view. Bot-
tom: rendering with lighting and inc. density from 60◦.
Global transport prevents artifacts, e.g., visible in (a), while
previous work (d,e) is smoother.

perparameters had to be adapted to work in our setting.
As TF is implemented in our framework its grid is also
cropped.

We use the original ScalarFlow code, which is based on
mantaflow, the solver we used to create our synthetic test
case. Due to this shared code-base SF has a certain advan-
tage in the synthetic case. It shows in the visual similarity
of the reconstructed motions compared to the reference, as
seen in the stream-plots of Figure 14 (f,g). Nevertheless,
our method matches the targets better than the SF version.
The high transport error of SF in Table 1a might be caused,
in part, by the missing inflow as the ScalarFlow algorithm
removes the synthetic inflow after reconstruction. SF runs
on the full 128 × 196 × 128 grid in the synthetic test case
while the real reconstructions from the provided dataset use
a grid size of 100× 178× 100.

NeuralVolumes typically works with many more view-
points than we provide. This results in artifacts in our
sparse-view setting, i.e., colored or black background is re-
constructed within the volume. The reconstruction is how-
ever still very good. To compute metrics and rendering we
sample a RGBα volume at the resolution of the reference
and extract a density via ρNV := 0.03[α]10(R + G + B)/3,
which removes black opaque artifacts, thus giving NV an
advantage in these comparisons.

B.4. Details for the Single-View Ablation

For the single-view ablation, Figure 5, we focus on the
key versions of our previous, multi-view ablation and eval-
uate them on real targets as the effect of the discriminator
is more prominent here. The tomographic reconstruction

(a) yields a strong smearing out of information along the
unconstrained direction of the viewing rays, despite the ex-
istence of transport initialization. Although the qualitative
examples from a 90◦ angle in Figure 5 top illustrate this be-
havior, it is even more clearly visible in the supplemental
videos. The coupling version (b) refines the reconstructed
volumes, but still contains noticeable striping artifacts as
well as a lack of details. Our global transport formulation
(c) resolves these artifacts and yields a plausible motion,
which, however, does not adhere to the motions observed
in the input views. In particular, it yields relatively strong
single streaks of transported density which are more diffu-
sive in the real world flow. The discriminator matches the
appearance of the reconstruction to the real world smoke,
thus guiding the motion reconstruction to adhere to features
of real flows (d).


