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1. Further Analyses
Here, we present additional experiments to demonstrate

the effectiveness and superiority of the proposed method.
First, The superiority of the pixel-level similarity compu-
tation is validated by comparing it with the feature-map-
level cross correlation in Sec. 1.1. Then, comparisons with
twelve competitive methods on multiple attribute subsets of
LaSOT are given in Sec. 1.2. Finally, we show that our
tracker requires fewer training samples than the siamese
methods while achieves better performance in Sec. 1.3.

1.1. Pixel-level Similarity Computation vs. Feature-
map-level Cross Correlation

Here, we compare the pixel-level similarity computation
that is used in our proposed space-time memory network
with the feature-map-level cross correlation that widely
used in many siamese trackers. As shown in Fig. 1, Fig. 1(a)
is the architecture of our proposed framework, and Fig. 1(b)
is a typical siamese tracking framework that takes the initial
frame of the tracking video as a fixed template to match the
most similar region in the search frame by the depth-wise
cross correlation.

To make fair comparisons, we use one memory frame
in the training phase and put the initial frame of the track-
ing video into the memory during inference for our pro-
posed framework. All frames are resized to be the same (i.e.
289×289) for both trackers, and a “Precise RoI Pooling [9]”
module is applied to fix the spatial size of the template fea-
ture map f t in the second tracker. Moreover, to make sure
that the head networks of the two trackers have the same
number of parameters, we increase the feature dimensional-
ity of the cross correlation response maps from 512 to 1024
through a 1 × 1 convolutional layer. All hyper-parameters
of the two trackers are the same as those used in the ex-
periments of the text. Tab. 1 shows that the tracker deploy-
ing pixel-level similarity computation outperforms the one
using feature-map-level cross correlation by 4% and 2.4%
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Table 1: Performance comparisons of the tracker deploy-
ing the pixel-level similarity computation (denoted as T P )
with the tracker deploying feature-map-level cross corre-
lation (denoted as T F ). Trackers are evaluated on OTB-
2015 [17] and UAV123 [12] in terms of success (AUC) met-
ric.

Tracker OTB-2015 UAV123

T P 0.711 0.632
T F 0.671 0.608

on OTB-2015 [17] and UAV123 [12] in terms of success
(AUC) metric, respectively.

1.2. Per-attribute Results on LaSOT

We test our tracker on the testing set of LaSOT [5], and
compare it with twelve competitive methods: LTMU [3],
DiMP-50 [1], Occean [21], SiamFC++ [18], Global-
Track [8], SiamCAR [6], ATOM [4], SiamBAN [2],
SiamRPN++ [10], UpdateNet [20], ROAM++ [19], and
VITAL [16]. Fig. 2 shows results on different attribute
videos of the LaSOT testing set. It can be observed that
our tracker has significant advantages when targets suffer
from deformations (DEF), rotations (ROT), scale variations
(SV), partial occlusions (POC), and illumination variations
(IV). Specifically, it surpasses the second place methods by
4.0%, 5.2%, 4.1%, 3.4%, and 6.1% in scenarios of DEF,
ROT, SV, POC, and IV, respectively. These advantages can
be mainly attributed to the pixel-level similarity computa-
tion used in our proposed space-time memory network.

1.3. Amount of Training Data

We list the amount of training data used by our tracker
and some top-performance siamese methods [2, 6, 18, 10] in
Tab. 2, where YT-BB [14], TrackingNet [13], GOT-10k [7],
ILSVRC VID [15], and LaSOT [5] are video datasets, and
ILSVRC DET [15] and COCO [11] are image datasets. It
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(a) A special case of our proposed framework, in which the number of memory frames is set to 1 during training and inference. For a fair comparison,
the memory branch and the query branch share the same backbone ϕm and the same non-linear convolutional layer hm.
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(b) A typical siamese tracking framework that uses a fixed template to match the most similar region in the search frame by the depth-wise cross
correlation. For a fair comparison, we set the input size of the template frame to be the same as the input size of the search frame, and we also use
a foreground-background label map in the template branch. We then utilize the precise RoI pooling [9] (denoted as PrPool in this figure) to fix the
spatial size of the template feature map. The feature dimensionality of the cross correlation response map is increased from 512 to 1024 by a 1 × 1
convolutional layer to ensure that the head network has the same number of parameters as the one in Fig. 1(a). Here f t and fs are the feature maps of
the template frame and the search frame, respectively. “?” denotes the depth-wise cross correlation, and y is the cross correlation response map whose
feature dimensionality is increased to 1024.

Figure 1: Two visual tracking frameworks. Fig. 1(a) is a special case of our proposed tracking framework that deploys
the pixel-level similarity computation (a key operation in our proposed space-time memory network), and Fig. 1(b) is a
conventional siamese tracking framework that deploys the feature-map-level cross correlation. In Fig. 1(a) and Fig. 1(b),
ϕm is a backbone for the feature extraction, hm is a non-linear convolutional layer for the feature dimensionality reduction,
and ωcls and ωreg are two lightweight convolutional networks for the foreground-background classification and the target
bounding box regression, respectively.
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(a) Deformation
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(b) Rotation
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Success plots of OPE - Scale Variation (273)

[0.606] Ours

[0.565] LTMU

[0.560] DiMP-50

[0.557] Ocean

[0.544] SiamFC++

[0.520] GlobalTrack

[0.517] SiamCAR

[0.512] ATOM

[0.512] SiamBAN

[0.494] SiamRPN++

[0.474] UpdateNet

[0.443] ROAM++

[0.385] VITAL

(c) Scale variation
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Success plots of OPE - Partial Occlusion (187)
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(d) Partial occlusion
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(e) Illumination variation
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(f) Aspect ratio change
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(g) Camera motion
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Figure 2: Performance comparisons of our proposed tracker with numerous competitive methods on several subsets with
different attributes from the LaSOT testing set.

Table 2: A training data usage comparison of our proposed tracker with some top-performance siamese methods [2, 6, 18, 10].
YT-BB is the abbreviation for YouTube BoundingBoxes [14]. #Vids + #Imgs: number of videos plus number of additional
static images.

Tracker
Videos Additional Images Total

YT-BB TrackingNet GOT-10k ILSVRC VID LaSOT ILSVRC DET COCO #Vids + #Imgs
380k 30k 9k 4k 1k 457k 119k

Ours X X X X X X 44k + 576k
SiamBAN X X X X X X 394k + 576k
SiamCAR X X X X 384k + 576k
SiamFC++ X X X X X X 394k + 576k

SiamRPN++ X X X X 384k + 576k

can be seen that, compared with these siamese methods, our
tracker requires much fewer training samples yet achieves
better performance.

2. Qualitative Results
We provide additional qualitative results of our tracker

(shown in red) in Fig. 3. Video sequences are collected from
OTB-2015 [17] and LaSOT [5]. For intuitive comparisons,
the results of two state-of-the-art trackers SiamFC++ [18]
(shown in green), DiMP-50 [1] (shown in yellow), and the
corresponding ground truth (shown in blue) are also visual-
ized in each snapshot. All visualized video sequences are
challenging, as described below:

• Fig. 3(a) shows the accuracies of trackers when the tar-

gets suffer from partial occlusions.

• Fig. 3(b) illustrates the semantic awareness of trackers
when the targets suffer from non-rigid deformations.

• Fig. 3(c) demonstrates the discriminative ability of
trackers when the targets distracted by similar objects
and backgrounds are cluttered.
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