
High-Fidelity and Arbitrary Face Editing - Supplementary Material

Yue Gao1, Fangyun Wei2, Jianmin Bao2, Shuyang Gu3, Dong Chen2, Fang Wen2, Zhouhui Lian1*

1Wangxuan Institute of Computer Technology, Peking University, China
2Microsoft Research Asia

3University of Science and Technology of China
{gerry, lianzhouhui}@pku.edu.cn, {fawe, jianbao, doch, fangwen}@microsoft.com,

gsy777@mail.ustc.edu.cn

In this supplementary material, we elaborate on the
implementation details, some attempts to address the
steganography problem of cycle consistency, comparison of
different frequency domains for skip-connection in the Gen-
erator and more results on wild faces.

1. Implementation Details
Dataset Details. We use CelebA-HQ [4] as the labeled
dataset, which contains 30, 000 images with 40 binary at-
tribute annotations for each image. We randomly select
28, 000 images as the training set to train the attribute clas-
sifier C, the remaining 2, 000 images are used as the test-
ing set. For the unlabelled dataset FFHQ [5], we use the
first 66, 000 images to train the G, DH and DI and the re-
maining 4, 000 images for testing. The image resolution is
chosen as 256× 256 in our experiments.
Model Details. The detailed architectures of the Generator,
Discriminators are shown in Table 1, Table 2 and Table 3
respectively.
Hyper-Parameters Details. The exponential moving av-
erage [13] is applied to the Generator G. We use Adam
optimizer [6] with β1 = 0.0 and β2 = 0.999, and uti-
lize TTUR [2] with lrG = 5e − 4, lrDI

= 2e − 3 and
lrDH

= 2e−3. The loss weights are λIGAN = 1.0, λHGAN =
1.0, λar = 1.0, λac = 1.0 and λcyc = 10.0. We train
the model for 100 epochs and another 100 epochs training
with learning rate decaying, where the decaying rate is set
to 0.999 for every 10 epochs.

2. Attempts to Address the Steganography
To alleviate the steganography problem caused by cy-

cle consistency, we first tried a few data augmentation tech-
niques to prevent the network from encoding hidden infor-

*Zhouhui Lian is the corresponding author. This work was sup-
ported by Beijing Nova Program of Science and Technology (Grant No.:
Z191100001119077).

mation to satisfy the cycle consistency. Specifically, we up-
date the cycle consistency to

Lcyc = E[‖ A(x)−G(A(G(x,∆)),−∆) ‖1], (1)

where A stands for data augmentation operations. Horizon-
tal flip, random noise, color jitter (i.e., contrast, saturation,
brightness) and affine transformation (i.e., rotation, transla-
tion, scaling) are investigated.

As shown in Figure 1 and Table 4, even with data aug-
mentations (e.g., horizontal flip, color jitter and affine trans-
formation), the model can still find a way to hide the infor-
mation, it still fails to synthesize rich details in the output
image. Although adding noise can somehow alleviate the
steganography problem, the quality of generated images is
far from satisfactory, especially the rich details are missing.
On the contrary, our results are high-fidelity keeping all the
rich details from the input image. This validates that our
proposed approach is effective to solve the steganography
problem.

Methods FID ↓ Acc. ↑ QS ↑ SRE ↓
H-flip 5.49 95.6 0.668 0.078
Noise 6.06 94.4 0.667 0.122
ColorJitter 5.15 95.9 0.703 0.059
Affine 5.34 95.8 0.681 0.071
HifaFace 4.04 97.5 0.803 0.021

Table 4: Quantitative comparison of using different data
augmentation techniques and our method to solve the
steganography problem in cycle consistency.

3. Ablation Studies for the Generator
To validate that the combination of LH, HL and HH

frequency components are essential for the wavelet-based
skip-connection, we perform a few variants of different
combinations of frequency components in wavelet-based



Components Input→ Output Shape Layer Information

From RGB (3, H, W)→ (64, H, W) Conv(F64)
Downsample
ResBlock (64, H, W)→ (128, H/2, W/2) IN-LReLU-Conv(F64)-Downsample-IN-LReLU-Conv(F128)

Downsample
ResBlock (128, H/2, W/2)→ (256, H/4, W/4) IN-LReLU-Conv(F64)-Downsample-IN-LReLU-Conv(F128)

ResBlock (256, H/4, W/4)→ (256, H/4, W/4) IN-LReLU-Conv(F256)-IN-LReLU-Conv(F256)
ResBlock (256, H/4, W/4)→ (256, H/4, W/4) IN-LReLU-Conv(F256)-IN-LReLU-Conv(F256)
ResBlock (256, H/4, W/4)→ (256, H/4, W/4) IN-LReLU-Conv(F256)-IN-LReLU-Conv(F256)
AdaIN ResBlock (256, H/4, W/4)→ (256, H/4, W/4) AdaIN-LReLU-Conv(F256)-AdaIN-LReLU-Conv(F256)
ResBlock (256, H/4, W/4)→ (256, H/4, W/4) IN-LReLU-Conv(F256)-IN-LReLU-Conv(F256)
ResBlock (256, H/4, W/4)→ (256, H/4, W/4) IN-LReLU-Conv(F256)-IN-LReLU-Conv(F256)
Upsample ResBlock (256 × 4, H/4, W/4)→ (128, H/2, W/2) IN-LReLU-Conv(F256)-Upsample-IN-LReLU-Conv(F128)
Upsample ResBlock (128 × 4, H/2, W/2)→ (64, H, W) IN-LReLU-Conv(F64)-Upsample-IN-LReLU-Conv(F3)
To RGB (64 × 4, H, W)→ (3, H, W) LReLU-Conv(F3)

Table 1: The network architecture of the generatorG. For all convolution (Conv) layers, the kernel size, stride and padding are
3, 1, and 1, respectively, Fx is the channel number of feature maps. “IN” denotes the Instance Normalization [11], “LReLU”
denotes the LeakyReLU activation function. “AdaIN” [3] is used to inject the attribute vector. Since we used the wavelet-base
skip-connection in G, the number of input channels in decoding layers are multiplied by 4.

Components Input→ Output Shape Layer Information

DI0

(3, H, W)→ (32, H/2, W/2) Conv(F32, K=4, S=2, P=1)-LReLU
(32, H/2, W/2)→ (64, H/4, W/4) Conv(F64, K=4, S=2, P=1)-LReLU

(64, H/4, W/4)→ (128, H/8, W/8) Conv(F128, K=4, S=2, P=1)-LReLU
(128, H/8, W/8)→ (256, H/16, W/16) Conv(F256, K=4, S=2, P=1)-LReLU

(256, H/16, W/16)→ (512, H/32, W/32) Conv(F512, K=4, S=2, P=1)-LReLU
(512, H/32, W/32)→ (512, H/64, W/64) Conv(F512, K=4, S=2, P=1)-LReLU

(512, H/64, W/64)→ (1, 1, 1) Conv(F1, K=4, S=1)

DI1

(3, H/2, W/2)→ (32, H/4, W/4) Conv(F32, K=4, S=2, P=1)-LReLU
(32, H/4, W/4)→ (64, H/8, W/8) Conv(F64, K=4, S=2, P=1)-LReLU

(64, H/8, W/8)→ (128, H/16, W/16) Conv(F128, K=4, S=2, P=1)-LReLU
(128, H/16, W/16)→ (256, H/32, W/32) Conv(F256, K=4, S=2, P=1)-LReLU
(256, H/32, W/32)→ (512, H/64, W/64) Conv(F512, K=4, S=2, P=1)-LReLU

(512, H/64, W/64)→ (1, 1, 1) Conv(F1, K=4, S=1)

Table 2: The network architecture of the multi-scale image-level Discriminators: DI0 and DI1.

skip-connection. For concreteness, we qualitatively and
quantitatively compare the following three variants with
different choices of frequency components in the wavelet-
based skip-connection, we have three variants: (1) the
HifaFace, skip-connecting LH, HL and HH; (2) the
Low-Freq, which use the low-frequency LL in the skip-
connection; (3) the All-Freq, skip-connecting all the four
frequency components LL, LH, HL and HH. As shown in
Figure 2 and Table 5, we observe that the model can not syn-
thesize rich details well without explicitly knowing high-
frequency domain information. And if we skip-connecting
all the low and high-frequency information, the model can
produce rich details. The overall performance is slightly
worse than our proposed HifaFace.

Methods FID ↓ Acc. ↑ QS ↑ SRE ↓
Low-Freq 5.37 95.9 0.707 0.060
All-Freq 4.18 97.4 0.792 0.022
HifaFace 4.04 97.5 0.803 0.021

Table 5: Quantitative comparison of results of using
different frequency components in wavelet-based skip-
connection.



Components Input→ Output Shape Layer Information

DH0

(3 × 3, H/2, W/2)→ (32, H/4, W/4) Conv(F32, K=4, S=2, P=1)-LReLU
(32, H/4, W/4)→ (64, H/8, W/8) Conv(F64, K=4, S=2, P=1)-LReLU

(64, H/8, W/8)→ (128, H/16, W/16) Conv(F128, K=4, S=2, P=1)-LReLU
(128, H/16, W/16)→ (256, H/32, W/32) Conv(F256, K=4, S=2, P=1)-LReLU
(256, H/32, W/32)→ (512, H/64, W/64) Conv(F512, K=4, S=2, P=1)-LReLU

(512, H/64, W/64)→ (1, 1, 1) Conv(F1, K=4, S=1)

DH1

(3 × 3, H/4, W/4)→ (64, H/8, W/8) Conv(F64, K=4, S=2, P=1)-LReLU
(64, H/8, W/8)→ (128, H/16, W/16) Conv(F128, K=4, S=2, P=1)-LReLU

(128, H/16, W/16)→ (256, H/32, W/32) Conv(F256, K=4, S=2, P=1)-LReLU
(256, H/32, W/32)→ (512, H/64, W/64) Conv(F512, K=4, S=2, P=1)-LReLU

(512, H/64, W/64)→ (1, 1, 1) Conv(F1, K=4, S=1)

Table 3: The network architecture of the multi-scale high-frequency Discriminators: DH0 and DH1.

H
-F

lip
N

oi
se

C
ol

or
Ji

tte
r

A
ffi

ne
H

ifa
Fa

ce

Input +Smile +Eyeglasses Hidden Input +Eyebrows +Eyeglasses Hidden

Figure 1: Comparison of methods using different data augmentation techniques and our methods to solve the steganography
problem in cycle consistency.

4. Additional Visual Results

In this section, more visual results are provided to
demonstrate the superiority of our model. The figures to
be presented and their corresponding subjects are listed as
follows:

• In Figure 3, we present the comparison of attribute-
based face editing results obtained by our model and
other existing methods, including GANimation [9],
STGAN [8], RelGAN [12], InterFaceGAN [10] and

StyleFlow [1]. We also provide the results by an in-
dustrial app, FaceApp [7].

• In Figure 4 and Figure 5, we show the comparison of
arbitrary face editing results obtained by our HifaFace,
our model without the attribute regression loss Lar,
RelGAN [12] and InterFaceGAN [10].

• In Figure 6, we demonstrate that our method HifaFace
can handle face images under various poses, races and
expressions.



L
ow

-F
re

q
A

ll-
Fr

eq
H

ifa
Fa

ce

Input + Open mouth +Eyeglasses Hidden Input +Mustache +Eyeglasses Hidden
Figure 2: Comparison of methods with different combinations of frequency components in the wavelet-based skip-
connection.

G
A

N
im

at
io

n
ST

G
A

N
R

el
G

A
N

IF
G

A
N

St
yl

eF
lo

w
Fa

ce
A

pp
H

ifa
Fa

ce

Input Eyeglasses Expression Input Eyeglasses Expression Input Eyeglasses Expression
Figure 3: Comparison of results obtained by our HifaFace and other state-of-the-art methods.

References
[1] Rameen Abdal, Peihao Zhu, Niloy Mitra, and Peter Wonka.

Styleflow: Attribute-conditioned exploration of stylegan-

generated images using conditional continuous normalizing
flows. ArXiv, abs/2008.02401, 2020. 3



R
el

G
A

N
IF

G
A

N
w

/o
L
a
r

H
ifa

Fa
ce

Input 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Figure 4: Interpolation results on attribute “smile” obtained by RelGAN [12], InterFaceGAN(IFGAN) [10], HifaFace without
the Lar and our HifaFace.

R
el

G
A

N
IF

G
A

N
w

/o
L
a
r

H
ifa

Fa
ce

Input 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Figure 5: Interpolation results on attribute “eyeglasses” obtained by RelGAN [12], InterFaceGAN(IFGAN) [10], HifaFace
without the Lar and our HifaFace.

[2] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and S. Hochreiter. Gans trained by a two
time-scale update rule converge to a local nash equilibrium.
In NIPS, 2017. 1

[3] X. Huang and Serge J. Belongie. Arbitrary style transfer in
real-time with adaptive instance normalization. 2017 IEEE
International Conference on Computer Vision (ICCV), pages
1510–1519, 2017. 2

[4] Tero Karras, Timo Aila, S. Laine, and J. Lehtinen. Progres-
sive growing of gans for improved quality, stability, and vari-
ation. ArXiv, abs/1710.10196, 2018. 1

[5] Tero Karras, S. Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks.
2019 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 4396–4405, 2019. 1

[6] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. CoRR, abs/1412.6980, 2015. 1

[7] Wireless Lab. Faceapp. https://www.faceapp.com.
3

[8] Ming Liu, Yukang Ding, Min Xia, Xiao Liu, E. Ding, W.
Zuo, and Shilei Wen. Stgan: A unified selective transfer net-
work for arbitrary image attribute editing. 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 3668–3677, 2019. 3

[9] Albert Pumarola, Antonio Agudo, Aleix M Martinez, Al-
berto Sanfeliu, and Francesc Moreno-Noguer. Ganimation:
Anatomically-aware facial animation from a single image. In
Proceedings of the ECCV, 2018. 3

[10] Yujun Shen, Ceyuan Yang, X. Tang, and B. Zhou. Inter-
facegan: Interpreting the disentangled face representation

https://www.faceapp.com


Input

Input

Eyeglasses

Eyeglasses

Mustache

Mustache

Expression

Hair color

Input

Input

Eyeglasses

Illumination

Expression

Mustache

Hair color

Hair color
Figure 6: Face editing results obtained by our HifaFace on wild images.

learned by gans. IEEE transactions on pattern analysis and
machine intelligence, PP, 2020. 3, 5

[11] D. Ulyanov, A. Vedaldi, and V. Lempitsky. Instance normal-
ization: The missing ingredient for fast stylization. ArXiv,
abs/1607.08022, 2016. 2

[12] P. Wu, Yu-Jing Lin, Che-Han Chang, E. Chang, and S. Liao.
Relgan: Multi-domain image-to-image translation via rela-
tive attributes. 2019 IEEE/CVF International Conference on
Computer Vision (ICCV), pages 5913–5921, 2019. 3, 5

[13] Yasin Yazici, C. S. Foo, S. Winkler, Kim-Hui Yap, G. Pil-
iouras, and V. Chandrasekhar. The unusual effectiveness of
averaging in gan training. ArXiv, abs/1806.04498, 2019. 1


