A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts

Yunhao Ge1,2, Yao Xiao2, Zhi Xu2, Meng Zheng1, Srikrishna Karanam1, Terrence Chen1, Laurent Itti2, and Ziyan Wu1

1United Imaging Intelligence, Cambridge MA
2University of Southern California, Los Angeles CA
\{first.last\}@united-imaging.com, yunhaoge@usc.edu, yxiao915@usc.edu, zhix@usc.edu, itti@usc.edu

1. Implementation Details

Network structure The network architectures of Graph Neural Network G and Embedding Network E are shown in Table. 1. G takes n hypotheses $h = \{h_1, h_2, ..., h_n\}$ (each hypothesis h_i is in the form of Structural Concept Graph (SCG)) as input, and output n feature vectors ($G(h_i)$) which concatenate all updated node and edge features of h_i. In G, we use class-specific e_{ji}^c for different hypotheses in each GraphConv layer. E concatenates all n feature vectors from all the hypotheses into a long vector and maps the vector ($1 \times (188 \times n)$) into n dimensional vector ($1 \times n$) with a MLP, where n is the number of classes of interest. “node” denotes node feature, “edge” denotes edge feature, “GraphConv” is graph convolutional layer, “ReLU” denotes ReLU activation function, “BN” denotes batch normalization, and “FC” denotes fully connected layer.

<table>
<thead>
<tr>
<th>Part</th>
<th>Input \rightarrow Output Shape</th>
<th>Layer Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>node: (2048 \rightarrow 64); edge: (4 \rightarrow 5)</td>
<td>GraphConv-e_{ji}^c, ReLU, BN</td>
<td></td>
</tr>
<tr>
<td>node: (64 \rightarrow 32); edge: (5 \rightarrow 5)</td>
<td>GraphConv-e_{ji}^c, ReLU, BN</td>
<td></td>
</tr>
<tr>
<td>node: (32 \rightarrow 32); edge: (5 \rightarrow 5)</td>
<td>GraphConv-e_{ji}^c, ReLU, BN</td>
<td></td>
</tr>
</tbody>
</table>

E $\quad (188 \times n) \rightarrow (n)$ $\quad FC-(188 \times n, n)$

Table 1. Network architectures of Graph Neural Network G and Embedding Network E.

Training details In Section 3.3 of the main paper, Eq.2 explains the knowledge distillation we used to imitate the reasoning process of Xception on ImageNet dataset. We train G and E in a end-to-end manner. Below are the details: we use Adam with $\beta_1=0.9$ and $\beta_2=0.999$, batch size 128, learning rate 0.01 for the first 100 epochs and use a decay rate of 0.5 for the next 200 epochs. For each interested class, we use 400 images to train and other 900 images to test.

2. Model Diagnosis with VRX Details

As we mentioned in main paper Section 4.4, Fig. 1 demonstrates the confusion matrix of 3 class vehicle classification on original dataset with Resnet-18.