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1. Algorithm

We summarize our method in Algorithm 1 where the no-

tations are described in the original paper.

Algorithm 1: One-Shot Texture Completion

Input : RGB Face Image: I0
Input : 3DMM Fitting: (S, c)
Input : Novel Camera Views: {ci}, i ∈ {0 . . . n}
Output: Completed UV Texture Map: Tn

1 T0 ← R
′(tcoord, I0,S

′)
2 for i← 0 to n do

3 S
′
i ← P(S, ci)

4 Vi ← (
[S′

i
,h]

||[S′

i
,h]||2

· N (Si)
T )

5 end

6 for i← 0 to n do

7 Vi ←
⋂

i 6=j

(Vi > Vj)

8 M
UV
i ←

(

(V0 > t1) ∩ (2V0 > Vi)
)

∪
⋃

i>j

Vj

9 Mi ← R(S
′
i,M

UV
i , tcoord)

10 Ii ← R(S
′
i,Ti−1, tcoord)

11 Wi ← E(Ii)
12 Wi ← argminWi

Ltotal(Ii,Mi,Wi)
13 Gi ← G(Wi)
14 Ti ← R

′(tcoord,Gi,S
′
i)

15 Ti ← Vi ⊙Ti + (1−Vi)⊙Ti−1

16 end

2. Pose-Invariant Face Matching: MultiPIE

dataset

For the evaluation in under-controlled scenario, we

compare our method with recent state-of-the-art studies,

e.g. CPF [12], DR-GAN [9], FF-GAN [13], TP-GAN [5],

CAPG-GAN [4], PIM [14], HF-PIM [1] and Rotate & Ren-

der [15], on the Multi-PIE dataset [2]. The performances

are reported following the protocol of the setting 2 [12, 1]

Method ±15◦ ±30◦ ±45◦ ±60◦ ±75◦ ±90◦

CPF [12] 95.0 88.5 79.9 61.9 - -

DR-GAN [9] 94.9 91.1 87.2 84.6 - -

FF-GAN [13] 94.6 92.5 89.7 85.2 77.2 61.2

TP-GAN [5] 98.7 98.1 95.4 87.7 77.4 64.6

CAPG-GAN [4] 99.8 99.6 97.3 90.3 83.1 66.1

PIM [14] 99.3 99.0 98.5 98.1 95.0 86.5

HF-PIM [1] 99.99 99.98 99.88 99.14 96.40 92.32

R&R [15] - 100 100 99.7 99.3 94.4

Baseline 99.98 99.86 99.80 98.50 96.19 92.06

Ours 100 100 99.88 99.62 99.35 95.24

Table 1: Rank-1 recognition rates (%) across views on the

Multi-PIE dataset [2]. The baseline model is ResNet-18

trained on MS1M with the ArcFace loss. Our method fur-

ther employs face finalization to improve the accuracy.

provided by the Multi-PIE dataset. Each testing identity

has one gallery image from the first appearance. Hence,

there are 72,000 and 137 images in the probe and gallery

sets, respectively. In Tab. 1, results are reported across dif-

ferent poses. We employ the strategy of “recognition via

generation” and faces at any pose are first frontalized by

our model. After the face frontalization, the pre-trained

ArcFace model trained on MS1M is employed as the fea-

ture extractor. Here, we refer to [15] to train ResNet-18,

which is slightly smaller than LightCNN-29 [10] used by

[1]. For those poses less than 60◦, the performances of

most methods are quite good whereas our method almost

achieves zero failure rate. However, the profiles with ex-

treme poses (> 60◦) on are very challenging. For those

extreme poses, our method obviously outperforms other

methods, surpassing the “Rotate & Render” method [15] by

0.84% under the pose of 90◦. This impressive recognition

performance undoubtedly confirms the effectiveness of the

proposed identity-preserved UV texture completion.

3. Performance on ‘in-the-wild’ Scenario

Following ‘Pose-Invariant Face Matching’ experiment in

the original paper, we visualize some of the frontal-profile
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pairs from CFP dataset [7] to evaluate and verify quantita-

tive experiments qualitatively. Figures 1,2,3a show many

pairs of frontal and profile images of the same identity,

completed texture UV maps by our method, its rendering,

frontalization by our method and cosine similarity scores.

The scores are obtained by a ResNet-18 networks [3] on

CASIA-WebFace [11] for:

• ‘Org.’: the pairs of original images

• ‘UV.’: original frontal image and rendered geometry

with a completed UV map by our method

• ‘Frontalized’: original frontal image and frontalized

image by our method

As can be seen in the figures both qualitatively and

quantitatively, our approach can generate excellent quality

frontal images and UV texture maps with preserved identity,

even under low resolution, extreme pose, occlusion, light-

ing and expression variations. The cosine similarity scores

are mostly improved by the generations of our method com-

pared to the original profile images which verifies the qual-

itative results.

4. Manipulating Frontalized Faces

Frontalization by our approach is achieved by render-

ing the geometry that is textured by the completed UV map

and reconstructing it in StyleGAN [6] latent space. There-

fore the frontalized images can be manipulated by common

StyleGAN manipulation techniques such as interpolation

between different identities and changing/adding some fa-

cial attributes.

Fig. 4 illustrates some interpolations performed between

the original and the frontalized projections that slowly shift

from various poses to the frontal pose. Fig. 5 shows inter-

polation between different identities, both in the frontalized

and the original projections. Please note that, the frontal-

ized interpolation maintain smoother transition between the

identities, whereas the original image projections generates

artefacts at the intermediate generations due to exhausted

latent parameters. Lastly, Fig. 6 illustrates attribute manip-

ulation by extracting some attribute directions with [8] such

as age, gender and expression.

5. Limitations and Failure Cases

The biggest strength and the biggest weakness of our

approach is being an optimization-based method. Usually,

the running time takes around 5-10 minutes depending on

the convergence speed. This is mainly due to CPU inten-

sive visibility mask and 3D mesh rendering over the itera-

tions. We believe that the code might be optimized to run

under 1 minute which is a reasonable running time for an

optimization-based method.

Another limitation of an optimization-based method is

the danger of local minima. We observed in some cases,

optimization gets stuck at local minima, failing to find a

good texture completion and frontalization. This is partially

addressed by the encoder network E , but emprically we can

still observe this behaviour as can be seen in Fig. 3b.

Another drawback of our approach is that it heavily re-

lies on 3D face reconstruction. Therefore, our method is

limited by the accuracy and performance of the 3D recon-

struction. That is to say, if some part of the identity cannot

be captured by the reconstruction, our method might strug-

gle to compensate. Some of such failure cases are illustrated

in Fig. 3b.
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Org.: 0.2721 UV: 0.5243 Frontalized: 0.4069

Org.: 0.3327 UV: 0.4258 Frontalized: 0.5298

Org.: 0.2333 UV: 0.3221 Frontalized: 0.3979

Org.: 0.3170 UV: 0.4840 Frontalized: 0.5972

Org.: 0.2814 UV: 0.3933 Frontalized: 0.4860

Org.: 0.3279 UV: 0.7150 Frontalized: 0.6226

Org.: 0.2443 UV: 0.3230 Frontalized: 0.4350

Org.: 0.3408 UV: 0.6294 Frontalized: 0.6295

Org.: 0.2799 UV: 0.4578 Frontalized: 0.5110

Org.: 0.2921 UV: 0.4374 Frontalized: 0.4793

Org.: 0.2467 UV: 0.3714 Frontalized: 0.5629

Org.: 0.1910 UV: 0.3520 Frontalized: 0.4144

Org.: 0.3069 UV: 0.4580 Frontalized: 0.5054

Org.: 0.2817 UV: 0.3825 Frontalized: 0.5592

Org.: 0.3257 UV: 0.1216 Frontalized: 0.3159

Org.: 0.2839 UV: 0.3537 Frontalized: 0.5617

Org.: 0.3441 UV: 0.6188 Frontalized: 0.6307

Org.: 0.3025 UV: 0.5550 Frontalized: 0.4817

Org.: 0.3000 UV: 0.3952 Frontalized: 0.4683

Org.: 0.2668 UV: 0.5800 Frontalized: 0.4946

Figure 1: Qualitative verification of the Pose-Invariant Face Matching experiment. Each block respectively consists of: (1)

Original frontal image, (2) Original profile image, (3) Rendered geometry with our completed texture map, (4) Our completed

texture map, (5) Our frontalized image.
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Org.: 0.3270 UV: 0.4017 Frontalized: 0.4985

Org.: 0.2314 UV: 0.2621 Frontalized: 0.3455

Org.: 0.3239 UV: 0.5294 Frontalized: 0.5108

Org.: 0.3220 UV: 0.3749 Frontalized: 0.4507

Org.: 0.2815 UV: 0.5524 Frontalized: 0.5627

Org.: 0.3178 UV: 0.2679 Frontalized: 0.5406

Org.: 0.3535 UV: 0.4687 Frontalized: 0.5833

Org.: 0.3611 UV: 0.5225 Frontalized: 0.4586

Org.: 0.2899 UV: 0.5659 Frontalized: 0.4974

Org.: 0.2847 UV: 0.2742 Frontalized: 0.4550

Org.: 0.3251 UV: 0.1906 Frontalized: 0.4698

Org.: 0.2903 UV: 0.5230 Frontalized: 0.3744

Org.: 0.2347 UV: 0.2016 Frontalized: 0.4063

Org.: 0.2444 UV: 0.0798 Frontalized: 0.4252

Org.: 0.3665 UV: 0.5696 Frontalized: 0.5975

Org.: 0.2750 UV: 0.3866 Frontalized: 0.4999

Org.: 0.3230 UV: 0.3584 Frontalized: 0.4714

Org.: 0.3066 UV: 0.3104 Frontalized: 0.5051

Org.: 0.3558 UV: 0.4814 Frontalized: 0.5172

Org.: 0.3376 UV: 0.5806 Frontalized: 0.5417

Figure 2: Qualitative verification of the Pose-Invariant Face Matching experiment. Each block respectively consists of: (1)

Original frontal image, (2) Original profile image, (3) Rendered geometry with our completed texture map, (4) Our completed

texture map, (5) Our frontalized image.
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Org.: 0.2931 UV: 0.3546 Frontalized: 0.4556

Org.: 0.3472 UV: 0.6477 Frontalized: 0.5133

Org.: 0.3028 UV: 0.4160 Frontalized: 0.4935

Org.: 0.3061 UV: 0.5749 Frontalized: 0.6450

Org.: 0.2548 UV: 0.3515 Frontalized: 0.4516

Org.: 0.2417 UV: 0.2932 Frontalized: 0.4577

Org.: 0.3625 UV: 0.5053 Frontalized: 0.6189

Org.: 0.3291 UV: 0.3974 Frontalized: 0.5685

Org.: 0.2689 UV: 0.4482 Frontalized: 0.5187

Org.: 0.3400 UV: 0.3351 Frontalized: 0.3944

(a) Successful cases

Org.: 0.2858 UV: 0.1868 Frontalized: 0.3251

Org.: 0.3269 UV: 0.1960 Frontalized: 0.3145

Org.: 0.3146 UV: 0.0173 Frontalized: 0.3831

Org.: 0.3221 UV: 0.8032 Frontalized: 0.6299

Org.: 0.2807 UV: 0.2053 Frontalized: 0.3055

Org.: 0.2542 UV: 0.3466 Frontalized: 0.3391

Org.: 0.3827 UV: 0.3984 Frontalized: 0.4523

Org.: 0.3083 UV: 0.1267 Frontalized: 0.3100

Org.: 0.3155 UV: 0.2631 Frontalized: 0.3359

Org.: 0.2483 UV: 0.1801 Frontalized: 0.3249

(b) Failure cases

Figure 3: Qualitative verification of the Pose-Invariant Face Matching experiment. Each block respectively consists of: (1)

Original frontal image, (2) Original profile image, (3) Rendered geometry with our completed texture map, (4) Our completed

texture map, (5) Our frontalized image.
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Figure 4: Interpolation between the original poses and the frontalized versions. First column is the original image. Second

column is its projection to the StyleGAN space. Last column is the frontalized generated image by our approach. And other

columns are the interpolation in-between.
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Figure 5: Interpolations between different identities. First and Last colums are the original images and other columns are

interpolations. Odd rows are interpolating frontal projections and even rows are interpolating the original image projections.

Please note that, the frontalized interpolation maintain smoother transition between the identities, whereas the original image

projections generates artefacts at the intermediate generations due to exhausted latent parameters.
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Figure 6: Attribute manipulation by [8] can be performed on the frontalized images.
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