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1. Algorithm

We summarize our method in Algorithm 1 where the no-
tations are described in the original paper.

Algorithm 1: One-Shot Texture Completion
Input : RGB Face Image: I
Input :3DMM Fitting: (S, c)
Input : Novel Camera Views: {c;},i € {0...n}
Output: Completed UV Texture Map: T,
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2. Pose-Invariant Face Matching: MultiPIE
dataset

For the evaluation in under-controlled scenario, we
compare our method with recent state-of-the-art studies,
e.g. CPF [12], DR-GAN [9], FF-GAN [13], TP-GAN [5],
CAPG-GAN [4], PIM [14], HF-PIM [ 1] and Rotate & Ren-
der [15], on the Multi-PIE dataset [2]. The performances
are reported following the protocol of the setting 2 [12, 1]

Method +15°  £30°  +45°  +£60° £75°  £90°
CPF[12] 950 885 799 619
DR-GAN[9] 949 9.1 872 846 - -
FF-GAN[I3] 946 925 897 852 772 612
TP-GAN[5] 987 98.1 954 877 774 646
CAPG-GAN[4] 998 99.6 973 903 831 66.1
PIM [14] 993 990 985 98.1 950 865

HF-PIM [1] 99.99 9998 99.88 99.14 96.40 9232
R&R [15] - 100 100 99.7 993 944

Baseline 99.98 99.86 99.80 98.50 96.19 92.06
Ours 100 100 9988 99.62 99.35 95.24

Table 1: Rank-1 recognition rates (%) across views on the
Multi-PIE dataset [2]. The baseline model is ResNet-18
trained on MS1M with the ArcFace loss. Our method fur-
ther employs face finalization to improve the accuracy.

provided by the Multi-PIE dataset. Each testing identity
has one gallery image from the first appearance. Hence,
there are 72,000 and 137 images in the probe and gallery
sets, respectively. In Tab. 1, results are reported across dif-
ferent poses. We employ the strategy of “recognition via
generation” and faces at any pose are first frontalized by
our model. After the face frontalization, the pre-trained
ArcFace model trained on MS1M is employed as the fea-
ture extractor. Here, we refer to [15] to train ResNet-18,
which is slightly smaller than LightCNN-29 [10] used by
[1]. For those poses less than 60°, the performances of
most methods are quite good whereas our method almost
achieves zero failure rate. However, the profiles with ex-
treme poses (> 60°) on are very challenging. For those
extreme poses, our method obviously outperforms other
methods, surpassing the “Rotate & Render” method [15] by
0.84% under the pose of 90°. This impressive recognition
performance undoubtedly confirms the effectiveness of the
proposed identity-preserved UV texture completion.

3. Performance on ‘in-the-wild’ Scenario

Following ‘Pose-Invariant Face Matching’ experiment in
the original paper, we visualize some of the frontal-profile



pairs from CFP dataset [7] to evaluate and verify quantita-
tive experiments qualitatively. Figures 1,2,3a show many
pairs of frontal and profile images of the same identity,
completed texture UV maps by our method, its rendering,
frontalization by our method and cosine similarity scores.
The scores are obtained by a ResNet-18 networks [3] on
CASIA-WebFace [ 1] for:

* ‘Org.’: the pairs of original images

e ‘UV.’: original frontal image and rendered geometry
with a completed UV map by our method

¢ ‘Frontalized’: original frontal image and frontalized
image by our method

As can be seen in the figures both qualitatively and
quantitatively, our approach can generate excellent quality
frontal images and UV texture maps with preserved identity,
even under low resolution, extreme pose, occlusion, light-
ing and expression variations. The cosine similarity scores
are mostly improved by the generations of our method com-
pared to the original profile images which verifies the qual-
itative results.

4. Manipulating Frontalized Faces

Frontalization by our approach is achieved by render-
ing the geometry that is textured by the completed UV map
and reconstructing it in StyleGAN [6] latent space. There-
fore the frontalized images can be manipulated by common
StyleGAN manipulation techniques such as interpolation
between different identities and changing/adding some fa-
cial attributes.

Fig. 4 illustrates some interpolations performed between
the original and the frontalized projections that slowly shift
from various poses to the frontal pose. Fig. 5 shows inter-
polation between different identities, both in the frontalized
and the original projections. Please note that, the frontal-
ized interpolation maintain smoother transition between the
identities, whereas the original image projections generates
artefacts at the intermediate generations due to exhausted
latent parameters. Lastly, Fig. 6 illustrates attribute manip-
ulation by extracting some attribute directions with [8] such
as age, gender and expression.

5. Limitations and Failure Cases

The biggest strength and the biggest weakness of our
approach is being an optimization-based method. Usually,
the running time takes around 5-10 minutes depending on
the convergence speed. This is mainly due to CPU inten-
sive visibility mask and 3D mesh rendering over the itera-
tions. We believe that the code might be optimized to run
under 1 minute which is a reasonable running time for an
optimization-based method.

Another limitation of an optimization-based method is
the danger of local minima. We observed in some cases,
optimization gets stuck at local minima, failing to find a
good texture completion and frontalization. This is partially
addressed by the encoder network &, but emprically we can
still observe this behaviour as can be seen in Fig. 3b.

Another drawback of our approach is that it heavily re-
lies on 3D face reconstruction. Therefore, our method is
limited by the accuracy and performance of the 3D recon-
struction. That is to say, if some part of the identity cannot
be captured by the reconstruction, our method might strug-
gle to compensate. Some of such failure cases are illustrated
in Fig. 3b.
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Figure 1: Qualitative verification of the Pose-Invariant Face Matching experiment. Each block respectively consists of: (1)
Original frontal image, (2) Original profile image, (3) Rendered geometry with our completed texture map, (4) Our completed
texture map, (5) Our frontalized image.
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Figure 2: Qualitative verification of the Pose-Invariant Face Matching experiment. Each block respectively consists of: (1)
Original frontal image, (2) Original profile image, (3) Rendered geometry with our completed texture map, (4) Our completed
texture map, (5) Our frontalized image.
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Figure 3: Qualitative verification of the Pose-Invariant Face Matching experiment. Each block respectively consists of: (1)

Original frontal image, (2) Original profile image, (3) Rendered geometry with our completed texture map, (4) Our completed
texture map, (5) Our frontalized image.
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Figure 4: Interpolation between the original poses and the frontalized versions. First column is the original image. Second
column is its projection to the StyleGAN space. Last column is the frontalized generated image by our approach. And other
columns are the interpolation in-between.



Figure 5: Interpolations between different identities. First and Last colums are the original images and other columns are
interpolations. Odd rows are interpolating frontal projections and even rows are interpolating the original image projections.
Please note that, the frontalized interpolation maintain smoother transition between the identities, whereas the original image
projections generates artefacts at the intermediate generations due to exhausted latent parameters.




Figure 6: Attribute manipulation by [8] can be performed on the frontalized images.
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