
Appendix

In the following pages, we present additional quanti-
tative results, qualitative results and experimental details
about the Neural Reprojection Error.

A. Additional Experiments

A.1. NRE-based pose estimator vs. Feature metric

Pose Refinement

We compare our novel NRE-based pose estimator
against Feature-Metric Pose Refinement (FPR) methods.
As explained in Section 7.2, FPR methods seek to mini-
mize Eq. 12. As such, FPR benefits from dense information
contained in query feature maps, but requires to choose a
robust loss function and tune its hyperparameters.

To complement our RE-based vs. NRE-based pose es-
timators study presented in Tab. 1, we propose to reuse
S2DNet [19] features to perform FPR, initialized from
our best RE pose estimator (MAGSAC++ [5]). To merge
information from all three feature extraction levels from
S2DNet [19], we try upsampling and concatenating descrip-
tors, as well as a coarse-to-fine alternative in which we iter-
atively refine predictions from the previous (coarser) level.

We report pose estimation errors in Tab. 4 for FPR and
NRE estimators. We show results using the Huber [21] ro-
bust loss as well as the Barron [4] loss. We find that NRE
performs consistently better while eliminating the need for
choosing a robust loss.

A.2. Experiments on Aachen Night [35]

So far, we evaluated the performances of our NRE-based
pose estimator on MegaDepth [25]. Here, we run a simi-
lar study on the Aachen Night [35, 37] dataset. This chal-
lenging outdoor dataset consists of 4, 328 sparsely sampled
daytime database images, and 98 nighttime query images.
To have a fair comparison between NRE-based and RE-
based pose estimators, we pair each query image with an
oracle nearest-neighbor database image and use all of its
visible 3D points to predict the query pose. Similar to the
MegaDepth study, we report results for RE-based, FPR-
based and NRE-based pose estimators, using S2DNet fea-
tures in Tab. 5. For FPR-based pose estimators we pick the
best configuration from 4.

As in the MegaDepth experiment, our NRE-based pose
estimator consistently provides significant improvement
over other pose estimators. We also compare the perfor-
mance coupling the NRE-based pose estimator with NRE
features trained on the same training set as S2DNet [19].
We report in Tab. 6 the pose estimation errors. We again
find that using NRE features brings an additional leap in
performance.

A.3. Experiments on InLoc [46]

To evaluate the generalization capabilities in an indoor
scenario, we run the same experiment on the InLoc [46]
dataset. This dataset consists of 329 query images, for
9, 972 database images. Unlike Aachen Night, we have ac-
cess to dense aligned depth maps for all database images.
To provide a fair comparison, we also pair each query image
with an oracle nearest-neighbor database image and use Su-
perPoint [16] detections (lifted to 3D using the depth maps)
in the database images as inputs. Results are reported in
Tab. 5.

We find that our NRE-based pose estimator provides
consistent improvements at the coarsest threshold, and over-
all competitive performance on the medium and fine ones.
The fact the relative improvement brought by our NRE-
based pose estimator is not as significant as for the other
datasets can be attributed to the domain shift with respect to
the training images. Nonetheless, despite being trained on
outdoor images we find that our NRE features bring addi-
tional improvements compared to S2DNet [19] features, as
shown in Tab. 6.

B. Qualitative results

In Fig. 6, we show several examples of query images
from the MegaDepth [25] validation set with a reprojected
3D point and the corresponding coarse dense loss map com-
puted using our coarse NRE features. It highlights that the
dense loss maps keep much more information than RE. As
a consequence, as we show in our experiments, our novel
NRE-based pose estimator significantly outperforms RE-
based pose estimators.

C. Derivation of Equation 9

In this section, we show how Eq. 8 (in the submited wer-
sion of the paper) is obtained.

The robust dense loss map LQ,n,� can be smoothed using
an isotropic Gaussian kernel as follows:
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Figure 6. Qualitative results: These qualitatives results correspond to additional examples for columns (a) and (b) in Fig.1. It highlights
that the dense loss maps keep much more information than RE. As a consequence our novel NRE-based pose estimator significantly
outperforms RE-based pose estimators.

Features Pose estimator Fusion  Translation Error Rotation Error

0.25m 1m 5m 2� 5� 10�

S2DNet [19] RE MAGSAC++ [5] N/A N/A 0.51 (+ 16%) 0.43 (+ 26%) 0.31 (+ 24%) 0.51 (+ 16%) 0.45 (+ 22%) 0.42 (+ 24%)
S2DNet [19] FPR Min. Eq. 12 C2F Huber [21] 0.70 (+ 59%) 0.65 (+ 91%) 0.52 (+108%) 0.69 (+ 57%) 0.63 (+ 70%) 0.58 (+ 71%)
S2DNet [19] FPR Min. Eq. 12 C2F Barron [4] 0.55 (+ 25%) 0.44 (+ 29%) 0.30 (+ 20%) 0.55 (+ 25%) 0.48 (+ 30%) 0.43 (+ 26%)
S2DNet [19] FPR Min. Eq. 12 Concat. Huber [21] 0.49 (+ 11%) 0.42 (+ 24%) 0.30 (+ 20%) 0.48 (+ 9%) 0.44 (+ 19%) 0.42 (+ 24%)
S2DNet [19] FPR Min. Eq. 12 Concat. Barron [4] 0.49 (+ 11%) 0.42 (+ 24%) 0.30 (+ 20%) 0.48 (+ 9%) 0.44 (+ 19%) 0.42 (+ 24%)
S2DNet [19] NRE N/A N/A 0.44 (+ 0%) 0.34 (+ 0%) 0.25 (+ 0%) 0.44 (+ 0%) 0.37 (+ 0%) 0.34 (+ 0%)

Table 4. NRE-based pose estimator vs. Feature-Metric Pose Refinement: We evaluate the gain in performance of our novel NRE-based
pose estimator against the Feature-Metric Pose Estimation (FPR) variant on the MegaDepth dataset. Here FPR consists in minimizing
Eq. 12 using as initialization the camera pose estimate from RE MAGSAC++ [5]. We find here that minimizing Eq. 12 allows to improve
the camera pose estimate from MAGSAC++, however our novel NRE again shows superior performance, while requiring no robust kernel
selection. The scores between brackets show the relative deterioration w.r.t. to NRE.

=
X

q2⌦Q

k� (kq� pk)
⇣
LQ,n (q)� ln |⌦̊Q|

⌘
+ cstp (16)

=
X

q2�Q,n

k� (kq� pk)
⇣
LQ,n (q)� ln |⌦̊Q|

⌘
+ cstp (17)

where k� (krk) := 1
2⇡�2 e

� krk2

2�2 is an isotropic Gaussian
kernel with standard variation � and �Q,n is the set of pixel
locations whose corresponding values in LQ,n are lower than
ln |⌦̊Q|. Equation 17 leads to the smoothed cost function:
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which is a robust non-linear least squares problem and
therefore can be minimized using the IRLS algorithm.

D. Technical details

D.1. Coarse-to-Fine Strategy (Sec. 5.3)

Step 6 of our coarse-to-fine strategy consists in com-
puting local high-resolution loss maps of size 64 ⇥ 64 at
the location of the reprojected 3D points using the coarse
pose estimate. The idea of that step is to transform the low-
resolution loss maps into high-resolution loss maps to ob-
tain a much more accurate pose estimate. The question is:
How can we combine a low-resolution robust loss map with
a local high-resolution discriminative loss map ? We pro-
ceed as follows:

1. A coarse correspondence map Ccoarse is of size
H/16 ⇥ W/16. Let us recall that by definitionP

p2⌦̊coarse
Ccoarse (p) = 1.

2. Compute the local high resolution correspondence
map Cfine of size 64 ⇥ 64 at the location of the repro-
jected 3D points (using the coarse pose estimate) q:



Features Pose Estimator Aachen Night InLoc-DUC1 InLoc-DUC2

0.25m, 2� 0.5m, 5� 5m, 10� 0.25m, 2� 0.5m, 5� 5m, 10� 0.25m, 2� 0.5m, 5� 5m, 10�

S2DNet MAGSAC++ [5] 0.46 (+ 55%) 0.28 (+ 80%) 0.10 (+229%) 0.62 (+ 3%) 0.41 (+ 2%) 0.31 (+ 11%) 0.70 (+ 11%) 0.44 (+ 5%) 0.30 (+ 2%)
S2DNet RE Min. Eq. 10 0.32 (+ 7%) 0.20 (+ 27%) 0.08 (+165%) 0.58 (- 4%) 0.40 (+ 1%) 0.31 (+ 13%) 0.66 (+ 6%) 0.47 (+ 13%) 0.39 (+ 31%)
S2DNet FPR Min. Eq. 11 0.32 (+ 7%) 0.20 (+ 27%) 0.06 (+ 97%) 0.61 (+ 1%) 0.41 (+ 4%) 0.29 (+ 4%) 0.63 (+ 1%) 0.41 (- 4%) 0.31 (+ 5%)
S2DNet NRE 0.30 (+ 0%) 0.15 (+ 0%) 0.03 (+ 0%) 0.60 (+ 0%) 0.39 (+ 0%) 0.28 (+ 0%) 0.62 (+ 0%) 0.42 (+ 0%) 0.29 (+ 0%)

Table 5. NRE-based vs. RE-based vs. FPR-based pose estimators on Aachen Night [35] and InLoc [46]: We evaluate the gain in per-
formance of our novel NRE-based pose estimator against state-of-the-art RE-based and FPR-based pose estimators. For a fair comparison,
each method uses the same oracle nearest-neighbor database image for each query image. Moreover, each method employs S2DNet [19]
features, even our NRE-based pose estimator. For the methods that have an hyperparameter, we optimized it and report the best results.
We report the error at several thresholds for translation and rotation (lower is better). The scores between brackets show the relative de-
terioration w.r.t. to NRE. On Aachen, there is no strong domain shift w.r.t. MegaDepth images that are used to train S2DNet, as a result
the dense loss maps are accurate and our NRE-based pose estimator significantly outperforms its competitors. On InLoc, there is a strong
domain shift (InLoc is an indoor dataset), as a result the dense loss maps are not very informative and our NRE-based pose estimator does
not significantly outperform its competitors.

Features Pose
Estim.

Aachen Night InLoc-DUC1 InLoc-DUC2

0.25m, 2� 0.5m, 5� 5m, 10� 0.25m, 2� 0.5m, 5� 5m, 10� 0.25m, 2� 0.5m, 5� 5m, 10�

S2DNet NRE 0.30 (+ 12%) 0.15 (+ 37%) 0.03 (+ 55%) 0.60 (+ 1%) 0.40 (+ 3%) 0.28 (+ 10%) 0.63 (+ 1%) 0.42 (+ 10%) 0.30 (+ 3%)
NRE Features NRE 0.26 (+ 0%) 0.11 (+ 0%) 0.02 (+ 0%) 0.59 (+ 0%) 0.39 (+ 0%) 0.25 (+ 0%) 0.62 (+ 0%) 0.38 (+ 0%) 0.29 (+ 0%)

Table 6. NRE features vs. S2DNet features for NRE-based pose estimators on Aachen Night [35] and InLoc [46]: We evaluate the gain
in performance of our NRE features against S2DNet [19] features using the same NRE-based pose estimator. We compare pose estimation
on Aachen Night [35] and InLoc [46] images. For a fair comparison, each method uses the same oracle nearest-neighbor database image
for each query image. We report the error at several precision thresholds for translation and rotation (lower is better). The scores between
brackets show the relative deterioration w.r.t. to NRE features. On Aachen, there is no strong domain shift w.r.t. MegaDepth images that
are used to train both S2DNet and our NRE feature, as a result the dense loss maps are accurate and we obtain improvements similar to the
ones we obtained in our MegaDepth experiment. On InLoc, there is a strong domain shift (InLoc is an indoor dataset), as a result neither
S2DNet dense loss maps nor the dense loss maps obtained using our NRE features are very informative. As a result, the pose estimated
ugin NRE features is not markedly more accurate than the pose obtained using S2DNet features.

(a) Extract a 64⇥64 region in the dense fine descrip-
tors around q.

(b) Compute the dot product with the fine descriptor
of the 3D point and apply a softmax to obtain
Cfine.

Thus by definition
P

p2N64⇥64(q)
Cfine (p) = 1.

3. Cfine corresponds to a region of size 8x8 in Ccoarse.
Compute the sum of these 64 pixels in Ccoarse. We call
this scalar normcoarse.

4. Multiply Cfine by normcoarse
64 to obtain Cfine norm.

Cfine norm is a local high-resolution version of Ccoarse.

5. The final local high resolution loss map is obtained
classically:
Lfine = min

⇣
ln |⌦̊fine|,� ln (Cfine norm)

⌘
. By defini-

tion, outside of the 64 ⇥ 64 region, the value of the
loss is ln |⌦̊fine|.

D.2. Network Architectures (Sec. 6)

Coarse network architecture. The purpose of the coarse
network Fcoarse is to provide robust descriptors that are used
to obtain a coarse pose estimate. To deal with ambiguous
cases, it should leverage image context. This motivates a
deep architecture with a wide receptive field and a large de-
scriptor size. On the other hand, the network should out-
put dense descriptors of sufficient resolution to reliably es-
timate a coarse camera pose. We experimentally found that
an effective stride of 16 is sufficient. To satisfy these spec-
ifications, we opted for an Inception-v3 [45] backbone and
modified it accordingly. We changed some kernel sizes and
truncated the network at the layer Mixed-6e. In the end our
final architecture has a receptive field of 927 pixels and pro-
duces dense descriptors of size H/16⇥W/16⇥ 1280.
Fine network architecture. The purpose of the fine
network Ffine is to provide discriminative high-resolution
descriptors that are used to refine the coarse pose estimate.
However, producing high-resolution descriptors takes a
lot of memory. This motivates a deep architecture with
a small receptive field and a small descriptor size. We
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Figure 7. Tuning the hyperparameter of an RE-based pose estimator: We report the cumulative error curves in pose estimation (lower
is better), on the hardest category of our Megadepth study, for the RE-based pose estimator that consists in minimize Eq. 10. We find
that a careful hyperparameter tuning is very important. On the contrary, our novel formalism leads to a loss that does not possess any
hyperparameter.

experimentally found that an effective stride of 2 is a good
balance between accuracy and memory consumption. To
satisfy these specifications, we opted again for a modified
Inception-v3 [45] backbone. We only keep the stride of 2
at the first layer and remove any Max-Pooling layer, and
we truncate the model at the Mixed-5d layer. Our final
architecture has a receptive field of 43 pixels and produces
dense descriptors of size H/2⇥W/2⇥ 288.

Implementation details. The coarse network Fcoarse and
the fine network Ffine are trained independently. Both net-
works use the same training data which comes from the
MegaDepth dataset [25]. As D2-Net [17], we remove
scenes which overlap with the PhotoTourism [1,48] test set.
We train our networks on image pairs (IS and IT) with an
arbitrary overlap.

To train Ffine, we extract random crops of size 800⇥800
and randomly sample a maximum of 64 3D points visi-
ble in both IS and IT. Using such large crops may seem
an overkill since Ffine has a small receptive field. Let us
highlight that using C ⇥ C crops allows to produce cor-
respondence maps of size C/2 ⇥ C/2 which essentially
consists in comparing each source patch against C2 target
patches. Thus, even if Ffine has a small receptive field, the
larger the crops during training the better the descriptors,
and 800 ⇥ 800 is the maximum size that could fit in mem-
ory.

To train Fcoarse, we use entire images as inputs since
the network has a very large receptive field and randomly
sample a maximum of 64 3D points visible in both IS and
IT. Each network is trained using early stopping on the
MegaDepth validation set. We use Adam [24] with an initial
learning rate of 10�3 and apply a multiplicative decaying
factor of e�0.1 at every epoch.

D.3. Timing

We run all our training and experiments on a ma-
chine equipped with an Intel(R) Xeon(R) E5-2630 CPU at
2.20GHz, and an NVIDIA GeForce GTX 1080Ti GPU. The
timing results reported in Tab. table:timings where obtained
using a Python implementation of the previously described
algorithms. Source code will be made available.

D.4. Implementation details about the RE-based vs.
NRE-based pose estimators study

• In our RE-based vs. NRE-based pose estimators
study, we used LO-RANSAC [14], GC-RANSAC [2]
and MAGSAC++ [5] implementations provided in
OpenCV 4.5.0 1.

• We show in Fig. 7 the cumulative errors curves for sev-
eral � values when minimizing Eq. 1 on the hardest
category of our Megadepth [25] study. These results
stress how important a careful hyperparameter tuning
is in standard RE pose estimators.

• Throughout our paper we run the coarse GNC with de-
creasing � values ranging from 2.0 to 0.6. For the fine
GNC, we use values between 8.0 and 0.6.
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