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1. Datasets - Extension
Citation Networks (Cora, Citeseer, Pubmed): The
three datasets Cora, Citeseer and Pubmed [16, 19] that we
use for semi-supervised learning are citation networks. So
the nodes in the graphs are documents and edges are citation
connections between them. Table 1 summarizes the charac-
teristics of each of these datasets (also listed in [22]). These
datasets are transductive meaning all training and test data
samples are present while constructing the input graph, but
the class labels for test samples are not used while training.

Table 1: Features of the 3 different datasets - Cora, Citeseer
and Pubmed for semi-supervised learning

Cora Citeseer Pubmed

# Nodes 2708 3327 19717
# Edges 5429 4732 44338
# Features/Node 1433 3703 500
# Classes 7 6 3
# Training Nodes 140 120 60
# Validation Nodes 500 500 500
# Test Nodes 1000 1000 1000

Kinetics: Kinetics [9] has 306245 video clips and we use
Kinetics400 with 400 action classes. Similar to [5], we
use the I3D network trained on Kinetics for pre-training
and then finetune the network on the other datasets we
use for zero/few-shot learning. We also use the classifier
layer weights for the Kinetics classes in the I3D model for
training the GCN for zero/few-shot learning. All Kinetics
classes are a part of our GCN training class set.

UCF101: UCF101 [20] has 101 action classes with 13320
videos. We use the same test-train data splits as [5]. So there
are 23 test classes (3004 videos) and 78 training classes.
The only classes in UCF101 that are not in common with
Kinetics are a part of the test set. [5] mention some changes
to action names such as “front crawl” becoming “front
crawl swimming” for an improved input Knowledge Graph
(KG). We keep these changes for an accurate comparison
with the baseline. While constructing the input KG, it has

nodes for the classes in UCF101 as well as nodes from 400
classes in Kinetics dataset. So there are 501 nodes in total.

HMDB51: HMDB51 [12] has 51 action classes with
6849 videos. The test-train split is same as [5] with 12 test
classes (1541 videos) and 39 training classes. Again only
the classes not in common with Kinetics are kept in the test
set for zero/few-shot learning. Also like in UCF101, [5]
make some changes to the action class names that make the
input KG better such as changing all verbs to continuous
tense (eg. “eat” to “eating”). We keep all these changes in
our dataset as well. There are Kinetics class nodes in the
input KG along with HMDB51 class nodes, same as de-
scribed for UCF101. So there are a total of 451 nodes in the
HMDB51 input KG.

Table 2 shows the classes of UCF101 and HMDB51 that
are not in common with Kinetics and form the test sets.

2. Pipeline - Extension
System Overview for zero/few-shot learning Our
zero/few-shot learning system is based on [5, 23] and we
give an overview of this system in Algorithm1 and pipeline
section of the main paper. We describe the baseline GCN
system in further detail here. The feature extractor module
is same across training and test classes. The only weights
that are not available for test classes in zero/few-shot learn-
ing is the final classifier layer weights. To learn these
weights, the system consists of two phases. Let C train be the
number of training classes and C test be the number of test
classes. In the training phase, first we finetune a I3D pre-
trained network for the training classes that predicts an em-
bedding feature for each video of dimension d. It also gives
us the final classifier layer weights for the training classes,
W cls, of dimension C train × d. There is a separate input KG
based on inter-relationships among classes and this KG is
passed though the GCN network which outputs a vector of
dimension d per node in the graph. So we take the outputs
of the GCN for the training nodes, H train, which will be of
dimension C train × d and compare it to the final classifier
layer weights provided by I3D using MSE loss. This MSE
loss is given by ‖H train −W cls‖2 and it is backpropagated
to train the GCN.



Table 2: Test classes from UCF101 and HMDB51 that are not in common with Kinetics Dataset

UCF101 test classes
apply eye makeup apply lipstick balance beam billiards field hockey penalty
front crawl hammering handstand walking jumping jack mixing batter
nunchucks parallel bars playing daf playing dhol playing sitar
playing tabla pommel horse rafting still rings table tennis shot
typing uneven bars yo yo

HMDB51 test classes
chew climb stairs fall floor handstand pour shoot gun
sit smile stand talk turn wave

In the testing phase we take the output of the GCN for
the test class nodes, H test of dimension C test × d. This gets
multiplied with the feature extracted from samples in test
classes, f test to give us the predicted class probability for
test classes, P test = f test(H test)T .

To show performance on GCN zero-shot we use the
A-KG network described in [5] and our main paper, along
with the hyperparameters for GCN training as used by [5].
We use 1 layer inGCN1 and 5 layers inGCN2 (both GCNs
described in main paper). The intermediate dimensions of
the 5 layers are 512 → 1024 → 1024 → 1024 → 1024.
The learning rate used is 0.001 with a weight decay of
0.0001. The learning rate scheduler is a stepwise sched-
uler which drops to 0.999 of the previous value at every 100
steps. To calculate loss we use the weighted summation of
MSE loss based on the specific dataset nodes (HMDB51
and UCF101) and Kinetics nodes (baseline GCN training
loss) and also triplet loss as described in the main paper.

For few-shot learning we use either V-KG or a combi-
nation of V-KG with A-KG and VN-KG as explained in [5]
and our main paper. The GCN network as well as the opti-
mization parameters remain the same as zero-shot learning
(ZSL), except for UCF101, where the learning rate becomes
0.00005 and there is no weight decay. The last layer of the 5
layers belonging to GCN2 is the fusion GCN layer for sys-
tems based on multiple KGs as used by [5]. For merging the
output of different KGs, we concatenate the output of first 4
layers of GCN2 from the different KGs along the channel
dimension and finally pass it through the fusion layer which
is a single layer GCN.
Additional Parameters The β parameter in the main pa-
per defines the weight factor for combination of triplet loss
with MSE loss. For HMDB51 this β factor is 0.1 whereas
for UCF101 we do not use β at all and just sum up the
losses. For Cora, Citesser and Pubmed, β is 0.8, 0.05 and
0.1 respectively.
Stopping criterion For both semi-supervised learning
and zero/few-shot learning we train for a fixed number of
epochs and choose the model at the best validation perfor-
mance for estimating results on test set.

Table 3: Impact of using triplet loss and updating adjacency matrix.

triplet loss update A mean accuracy
Cora Citeseer Pubmed

80.0 72.0 77.8
! 81.9 72.0 77.9

! 83.3 74.3 79.5
! ! 83.6 74.3 79.8

Table 4: Different # of clusters/class for the soft-triple loss.

Clusters per class 2 4 6 8 10

Cora 83.6 82.3 82.3 82.1 82.1
Citeseer 71.5 73.2 71.6 72.9 74.3
Pubmed 79.8 79.7 79.7 79.8 79.2

3. Results-Extension
We have results from ablation experiments in Table 4 of

the main paper showing results after decoupling adjacency
matrix update and triplet loss for UCF101 V-KG based few-
shot learning. We also provide these ablation experiments
on Cora, Citeseer and Pubmed test datasets in Table 3 here.
For Citeseer, triplet loss does not help, but to build a generic
network architecture that work for different kinds of tasks,
use of triplet loss can be demonstrated through these re-
sults. We conducted analysis for the robustness of the semi-
supervised learning experiments to number of clusters per
class for the soft-triple loss on semi-supervised learning test
datasets and the results are in Table 4.

We run an ablation experiment on A-KG for UCF101
validation set, where we use the updated adjacency ma-
trix Aupdated (defined in main paper) for GCN1 as well as
GCN2 and our performance drop to 47.85% vs. the origi-
nal result of 54.41% (in our main paper) for using Aupdated

only for GCN2.
The different works we compare to in Table 1 and Table

7 from our main paper are SemiEmb[24], DeepWalk[17],
ICA[13], Planetoid[25], Chebyshev[2], GCN[10],
MoNet[15], GAT[22], GLNN[4], GCN+GDC[11], H-
GCN[7], GLCN[8], ESZSL[18], DEM[26], TS-GCN[3],
Ghosh et al. [5], Mettes et al. [14], UR[27], Action2vec[6]



Figure 1: We plot the adjacency matrix connections for UCF101+Kinetics A-KG input and show the following two updates.
We plot only a sub-graph due to space complexity, so we chose 8 test classes (shown in red in list of class names) and display
all their connections in the KG. The red classes can connect to any other class. The edge colors show the weight of the
connection. There are multiple regions where we can see improvements after first and second update. Best viewed in digital.

and TARN[1], and more details about them are as follows:
SemiEmb [24] combines nonlinear embeddings for

shallow semi-supervised learning with deep learning where
these techniques act as a regularizer on the output layer or
at each intermediate layer of a deep network.

DeepWalk [17] extends existing language based and un-
supervised learning approaches to graph based multi-label
classification tasks.

ICA [13] uses structured logistic regression for a link
based model that captures both link information as well as
features of the objects connected by these links.

Planetoid [25] trains semi-supervised learning for graph
data where the embeddings are jointly encoded for better
classification and capturing neighborhood context.

Chebyshev [2] uses spectral graph theory to generalize
convolutional neural networks to graph data.

GCN [10] uses a localized first order approximations of
spectral graph convolutions for efficient and scalable graph
convolution networks.

MoNet [15] develops generalized convolutional neural
networks to be applied on graphs and manifolds which are
non-euclidean domains.

GAT [22] uses self attention layers on graph convolution

networks without any costly matrix inversion operation.
GLNN [4] optimizes the adjacency matrix of a graph

with multiple objectives like sparsity constraint, properties
of valid adjacency matrix etc.

GCN+GDC [11] replaces message passing in graphs
with graph diffusion convolutions that combines advantages
of spatial and spectral methods.

H-GCN [7] aggregates similar nodes into hyper-nodes
and then refines each hyper-node to get back the original
node embeddings which increases the receptive field of each
node and captures global information.

GLCN [8] is an integrated graph learning and graph con-
volutional network that estimates the optimal graph struc-
ture for better results.

ESZSL [18] learns relationships between features, at-
tributes, and classes in ZSL using two simple linear layers.
Their system is not graph based and they provide results for
zero-shot image classification.

DEM [26] maps the language embedding directly to the
image feature space for ZSL and does not use an interme-
diate space. They are not a graph based system and provide
results for zero-shot image classification.

TS-GCN [3] is GCN based, using Conceptnet [21] to



construct a KG for both actions and objects. They have a
second channel of visual object descriptors and show that
they achieve their best results when selecting 2000 most
common visible objects in their dataset. So they show their
best performance in the transductive mode needing the test
data without the labels during training.

[5] uses a GCN based system that has already been de-
scribed in Section 2 and we use them as the baseline. We
use triplet loss and adaptive learning of the adjacency ma-
trix to improve on their results.

[14] uses local and global object awareness for better hu-
man object interaction detection. They are not graph based.

UR [27] preserve essential visual and semantic informa-
tion in shared space to generate a universal representation
that can generalize to new datasets for ZSL. They are not
graph based.

Action2vec [6] develops a cross-modal embedding
space combining language descriptors with spatio-temporal
video features. They are also not a graph based system.

TARN [1] uses attention for temporal alignment and the
network learns to align using a deep distance metric at the
video segment level. They are not a graph based system and
give results for zero and few-shot learning.

4. Discussion-Extension
In Figure 1 we point out additional example classes in

Figure 4 from the main paper, where the graph connec-
tions show how the adjacency matrix update helped. We
look at the “Mixing Batter” test class. Due to the presence
of the word “batter”, the language based KG associates it
with “baseball” and “batting”. After the first update these
“baseball” related classes are still its neighbors, but after the
second update they are replaced by “Baking cookies” and
“Cooking on campfire”. Similarly “Apply Lipstick” is con-
nected to “Faceplanting” class initially which gets removed
after the update. Also “Playing Daf” builds connections to
“Playing Dhol” and “Playing Drums” after the second up-
date.
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