— Supplementary Material —
OBoW: Online Bag-of-Visual-Words Generation for Self-Supervised Learning

Spyros Gidaris!, Andrei Bursuc!, Gilles Puy!, Nikos Komodakis?, Matthieu Cord?, Patrick Pérez!

lyaleo.ai

A. Comparing with MoCo for the same image
augmentations

In the main paper we saw that the image augmentation
techniques that we designed for our method have a strong
positive impact on the quality of the learned representations.
However, we stress that the performance improvement of our
method over state-of-the-art instance-discrimination meth-
ods is not simply due a better mix of augmentations.

For example, in Table 1 we compare OBoW with MoCo
v2, when the latter is implemented with the same image aug-
mentations as those in the full solution of OBoW. We see that
indeed, although the proposed augmentations also improve
MoCo v2, our method is still significantly better, even in
its vanilla version that employs simpler augmentations (i.e.,
only a single 160 x 160-sized crop). Therefore, the ability
of OBoW to learn state-of-the-art representations is mainly
due to its BoW-guided reconstruction formulation.

B. Visualization of the vocabulary features

In Figures 1 and 2 we illustrate visual words from the
conv5 and conv4 teacher feature maps of a ResNet50
OBoW model trained on ImageNet. Since we use a queue-
based vocabulary that is constantly updated, for the visual-
izations we used the state of the vocabulary at the end of
training. In order to visualize a visual word, we retrieve
multiple image patches from images in the ImageNet train-
ing set and depict the 8 patches with the highest assignment
score for that visual word. As it can be noticed, visual words
encode high level visual concepts.

C. Implementation details
C.1. Image augmentation during pre-training

In Section 3.3 of the main paper, we described the two
types of image crops that we extract from a training image
in order to train the student network with them. In addition,
beyond image cropping, similar to SimCLR [3], we also ap-
plied color jittering, color-to-grayscale conversion, Gaussian
blurring and horizontal flipping as augmentation techniques.

*University of Crete

3Sorbonne Université

Few-shot
Method EP | n=1 mn=2>5 | Linear
OBoW (vanilla) 80 | 42.11 6244 | 45.86
OBoW (full) 80 | 44.18 64.89 | 50.89
MoCo v2 80 | 24.75 43.89 35.00
MoCo v2 (our aug.) | 80 | 3690 55.87 | 43.13

Table 1: Comparison with MoCo v2 for the same image aug-
mentations. “EP”: total number of epochs used for pre-training.
The results are obtained by training ResNet18-based models on
20% of ImageNet, similar to Sections 4.1 and 4.2 of the main paper.
“MoCo v2 (our aug.) ” is a MoCo v2 model implemented with the
same augmentations that we use in the full version of our work, i.e.,
two 160 x 160-sized crops plus five 96 x 96-sized patches.

All implementation details are provided in Section F in the
form of PyTorch code.

C.2. Evaluation protocols in Section 4.1

To evaluate the quality of the learned representations, we
use two protocols. (1) The first protocol consists in freezing
the convnet and then training on its features 1000-way linear
classifiers for the ImageNet classification task. The classifier
is applied on top of the 512-dimensional feature vectors pro-
duced from the final global pooling layer of ResNetl8. It is
trained with SGD for 50 epochs using a learning rate of 10
that is divided by a factor of 10 every 15 epochs. The batch
size is 256 and the weight decay 2e—6. For fast experimen-
tation, we train the linear classifier with precached features
extracted from the 224 x 224 central crop of the image and
its horizontally flipped version. (2) For the second protocol,
we use a few-shot episodic setting [14]. We choose 300
classes from ImageNet and run 200 episodes of 50-way few-
shot classification tasks. Essentially, for each episode, we
randomly select 50 classes from the 300 ones and, for each
of these selected classes, n training examples and m = 1 test
example (both randomly sampled from the validation images
of ImageNet). For n, we use 1 and 5 examples correspond-
ing to 1-shot and 5-shot classification settings, respectively.
The m test examples per class are classified using a cosine-

Figure 1: Examples of visual-word members from the conv5 layer of ResNet50. The visualizations are created by using
the state of the queue-based visual-words vocabulary at the end of training. For each visual word, we depict the 8 image
patches retrieved from ImageNet with the highest assignment score for that word.

distance Prototypical-Networks [13] classifier applied on top
of the frozen self-supervised representations. We report the
mean accuracy over the 200 episodes. The purpose of this
metric is to analyze the ability of the representations to be
used for learning with few training examples. Furthermore,
it has the advantage of not requiring tuning of any hyper-
parameters, such as the learning rate of a linear classifier, the
number of training steps, efc.

C.3. Self-supervised training on ImageNet

Here we provide implementation details for the pre-
training of the ResNet50-based OBoW model that we use
in Section 4.3 of the main paper. We present the full imple-
mentation of our method, which includes multi-scale BoWs
from the conv4 and conv5 layers of ResNet50, and ex-
traction of two crops of size 160 x 160 plus five patches of
size 96 x 96 per training image. To extract BoW targets, we
use K = 8192 as vocabulary size and we ignore the local
feature vectors on the edge / border of the teacher’s feature

maps. The momentum coefficient « for the teacher updates
is initialized at 0.99 and is annealed to 1.0 during training
with a cosine schedule. Finally, the hyper-parameters « and
Obase are set to 8 and 1/15 respectively.

We train the model for 200 training epochs with SGD
using le—4 weight decay and 256-sized mini-batches. As a
learning-rate schedule, we warm up the learning rate from 0
to 0.03 with linear annealing during the first 10 epochs and
then, for the remaining 190 epochs, we decrease it from 0.03
to 0.00003 with cosine-based schedule. To train the model
we use 4 Tesla V100 GPUs with data-distributed training
(i.e., the mini-batch is divided across the 4 GPUs) while
keeping the batch-norm statistics synchronized across all
GPUs (i.e., use the SyncBatchNorm units of PyTorch).

C.4. Evaluation protocols in Section 4.3
Here we describe the evaluation protocols that we use in
Section 4.3 of the main paper.

ImageNet linear classification. In this case, we evalu-

Figure 2: Examples of visual-word members from the conv4 layer of ResNet50. The visualizations are created by using
the state of the queue-based visual-words vocabulary at the end of training. For each visual word, we depict the 8 image
patches retrieved from ImageNet with the highest assignment score for that word.

ate the performance on the 1000-way ImageNet classifica-
tion task by applying a linear classifier on top of the 2048-
dimensional frozen features of the poo 15 layer of ResNet50.
We train the linear classifier using SGD for 100 training
epochs with 0.9 momentum, 0 weight decay, 1024-sized
mini-batches and cosine learning-rate schedule initialized
at 10.0. We use the typical image augmentations used for
the fully-supervised training of ResNet50 models on this
dataset.

Places205 linear classification. For this protocol, we
evaluate the performance on the 205-way Places classifi-
cation task by applying a linear classifier on top of the 2048-
dimensional frozen features of the poo 15 layer of ResNet50.
We follow the guidelines of [6] and train the linear classifier
using SGD for 14 training epochs and a learning rate of 0.01
that is multiplied by 0.1 after 5 and 10 epochs. The batch
size is 256 and the weight decay is le—4.

VOCO07 linear classification with SVMs. Here we evalu-
ate on the VOCO7 classification task by training and testing

linear SVMs on top of the 2048-dimensional frozen features
of the poo15 layer. To that end, we use the publicly avail-
able code for benchmarking self-supervised methods pro-
vided in [6] that trains the SVMs using the VOCO7 train+val
splits and tests them using the VOCO7 test split.

Semi-supervised learning setting on ImageNet. For this
semi-supervised setting, we fine-tune the self-supervised
ResNet50 model (pre-trained on all ImageNet unlabelled
images) on 1% or 10% of ImageNet labelled images. We
use the same 1% and 10% splits as in SimCLR (i.e., we
downloaded and use the split files of their official code re-
lease). We train using SGD with 256-sized mini-batches, 0
weight decay, and two distinct learning rates for the classi-
fication head and the feature extractor trunk network com-
ponents respectively. Specifically, in the 1% setting, we use
40 epochs and the initial learning rates 0.5 and 0.0002 for
the classification head and feature extractor trunk compo-
nents, respectively, which are then multiplied by a factor of
0.2 after 24 and 32 epochs. In the 10% setting, we use 20

epochs and the initial learning rates 0.5 and 0.0002 for the
classification head and feature extractor trunk components,
respectively, which are multiplied by a factor of 0.2 after 12
and 16 epochs.

VOC object detection. Here we evaluate the utility
of OBoW on a complex downstream task: object detec-
tion. We follow the setup considered in prior works [2,
5, 6, 7, 9]: we fine-tune the pre-trained OBoW with a
Faster R-CNN [12] model using a ResNet50 backbone [8]
(R50-C4 in Detectron2 [15]). We use the fine-tuning
protocol and most hyper-parameters from He et al. [7]:
fine-tune on trainval07+12 and evaluate on test07.
In detail, we train with mini-batches of size 16 across
4 GPUs for 24K steps, using SyncBatchNorm to fine-
tune BatchNorm parameters, as well as inserting an addi-
tional BatchNorm layer for the Rol head after conv5, i.e.,
Res5ROIHeadsExtraNorm layer in Detectron2. The
initial learning rate 0.01 is warmed-up with a slope of 1le—3
for 100 steps and then reduced by a factor of 10 after 18K
and 22K steps. We report results for the final checkpoint
averaged over 3 different runs.

D. On-line k-means vocabulary updates

As explained in the main paper, one of the explored
choices for updating the vocabulary is to use online k-means
after each training step. Specifically, as proposed in VQ-
VAE [10, 11], we use exponential moving average for vocab-
ulary updates. In this case, for each mini-batch, we compute
the number ny, of feature vectors assigned to each cluster k
and my, the element-wise sum of all feature vectors assigned
to cluster k and update

N <~ yNi + (1 — v)ng, (1)
M, <= yMy + (1 — v)my, 2

with v = 0.99. The &' visual word of the vocabulary V
satisfies vy, = M} /Ny. A critical issue that arises in this
case is that, as training progresses, the features distribution
changes over time. The visual words computed by online
k-means do not adapt to this distribution shift leading to
extremely unbalanced cluster assignments and even to as-
signments that collapse to a single cluster. In order to counter
this effect, we investigate two different strategies:

(a) Detection and replacement of rare visual words. In
this case, for each visual word we keep track of the time
of its most recent assignment as closest cluster centroid
to a feature vector. If more than 1000 training steps have
passed since then, then we replace it with a local feature
vector randomly sampled with uniform distribution from the
current mini-batch.

(b) Enforcing uniform assignments via Sinkhorn opti-
mization. Let x;,...,x; be the b images of the cur-
rent mini-batch and D be the K x B matrix (B =

he x wg % b) whose i row D; contains the squared dis-

tances between all the local features in the mini-batch
(across all images and spatial dimensions) and the 7*" visual
word: D; = [HT(xl)[l] —vill3, .. I T(xp) [he x we] —
v;||3,]. Similarly to [1, 2], we compute the assignment
codes by solving the regularised optimal transport problem
mingeo Y ; ; Qi Dij + € Qi jlog Qs 5, where ¢ is a coef-
ficient that controls the softness of the assignments. The
set Q permits us to enforce uniform assignments among all
the visual words and satisfies Q = {Q € RfXB|QlB =
%IK, QTIK = %13}, where 1 and 1p are vectors of
length K and B, respectively, with all entries equal to 1.
We compute () with the Sinkhorn algorithm [4] and use the
resulting assignment codes for the on-line k-means updates
and for the computation of the BoW targets.

E. Time and memory consumption

In Table 2, we provide the time and memory consumption
of our method as well as of MoCo v2 and BYOL. We ob-
serve that OBoW achieves state-of-the-art results in less time
(“Training time” row) than the competing methods. In terms
of GPU memory consumption, with 256-sized mini-batches
our method requires 15775Mb per GPU in a 4-GPU machine
(or 8901Mb per GPU in a 8-GPU machine).

| Sup. OBoW MoCov2 BYOL

Epochs | 100 200 800 300
Measured with 256-sized mini-batches

Time per epoch 1.00 391 1.58 3.47
Training time 1.00 7.82 12.64 10.41
Memory per GPU | 1.00 2.00 1.13 1.72
ImageNet linear classification accuracy

batch size = 256 76.5 73.8 71.1 -
batch size = 4096 | - - - 72.5¢

Table 2: Time and memory consumption relative to supervised
training. “Sup.” is the supervised ImageNet training. To mea-
sure the time and memory consumption, for all methods we used
ResNet50-based implementations, 256-sized mini-batches and data-
distributed training with 4 Tesla V100 GPUs. We measured the
time consumption based on a single training epoch (“Time per
epoch”). We also provide the projected time for the full training
of a method (“Training time”), which is estimated based on the
specified number of training epochs (“Epochs”). For OBoW, we
used its full implementation. T: for BYOL we provide the time
and memory consumption w.r.t. 256-sized mini-batches, but BYOL
uses 4096-sized mini-batches to achieve the reported ImageNet
classification accuracy. So, in reality BYOL has higher total GPU
memory requirements.

F. PyTorch code of Image augmentations

Here we provide the PyTorch implementation of the image augmentations used in our work.

import random

import torch

import torchvision.transforms as T
from PIL import ImageFilter

class CropImagePatches:
"""Crops from an image 3 x 3 overlapping patches."""
def __init__ (self, patch_size=96, patch_jitter=24, num_patches=5):
self.patch_size = patch_size
self.patch_jitter = patch_jitter
self.num_patches = num_patches

def __call__ (self, img):
_, height, width = img.size()
split_per_side = 3

offset_y = (height - self.patch_size — self.patch_jitter) // (split_per_side-1)
offset_x = (width - self.patch_size - self.patch_jitter) // (split_per_side-1)
patches = []

for 1 in range(split_per_side):
for j in range(split_per_side):
y_top = 1 % offset_y + random.randint (0, self.patch_jitter)
x_left = j » offset_x + random.randint (0, self.patch_jitter)
y_bottom = y_top + self.patch_size
x_right = x_left + self.patch_size
patches.append(img[:, y_top:y_bottom, x_left:x_right])

if self.num_patches < (split_per_side % split_per_side):
indices = torch.randperm(len (patches)) [:self.num_patches]
patches = [patches[i] for i in indices.tolist()]

return torch.stack (patches, dim=0)

class StackMultipleViews:

def __init__ (self, transform, num_views) :
self.transform = transform
self.num_views = num_views

def __call__ (self, img):

return torch.stack([self.transform(img) for _ in range(self.num_views)], dim=0)

class GaussianBlur:
def __init__ (self, sigma=[.1l, 2.]):
self.sigma = sigma

def __call__ (self, img):
sigma = random.uniform(self.sigma[0], self.sigmal[l]
return img.filter (ImageFilter.GaussianBlur (radius=sigma))

normalize = T.Normalize (mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]

Define the transformations for extracting the central from of the original
transform_original_image = T.Compose ([

T.Resize (256),

T.CenterCrop (224),

T.RandomHorizontalFlip (),

T.ToTensor (),

normalize])

Define the transformations for generating two 160x160-sized image crops.
transform_two_160x160_image_crops = StackMultipleViews (
transform=T.Compose ([
.RandomResizedCrop (160, scale=[0.08, 0.61),
.RandomApply ([T.ColorJitter (0.4, 0.4, 0.4, 0.1)], p=0.8),
.RandomGrayscale (p=0.2),
.RandomApply ([GaussianBlur (sigma=[0.1, 2.0])], p=0.5),
.RandomHorizontalFlip(),
.ToTensor (),
normalize]),
num_views=2)

HHHaa33

Define the transformations for generating two 160x160-sized image crops.
transform_five_96x96_image_patches = T.Compose ([

T.RandomResizedCrop (256, scale=[0.6, 1.0]),

T.RandomApply ([T.ColorJitter (0.4, 0.4, 0.4, 0.1)], p=0.8),

T.RandomGrayscale (p=0.2),

T.RandomHorizontalFlip (),

T.ToTensor (),

normalize,

CropImagePatches (patch_size=96, patch_jitter=24, num_patches=5)])

image.

References

(1]

(2]

(3]

(4]

(]

(6]

(7]

Yuki Markus Asano, Christian Rupprecht, and Andrea
Vedaldi. Self-labelling via simultaneous clustering and repre-
sentation learning. In /CLR, 2020. 4

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal,
Piotr Bojanowski, and Armand Joulin. Unsupervised learn-
ing of visual features by contrasting cluster assignments. In
NeurIPS, 2020. 4

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geof-
frey Hinton. A simple framework for contrastive learning of
visual representations. In /CML, 2020. 1

Marco Cuturi. Sinkhorn distances: Lightspeed computation
of optimal transport. In NeurIPS, 2013. 4

Spyros Gidaris, Andrei Bursuc, Nikos Komodakis, Patrick
Pérez, and Matthieu Cord. Learning representations by pre-
dicting bags of visual words. In CVPR, 2020. 4

Priya Goyal, Dhruv Mahajan, Abhinav Gupta, and Ishan
Misra. Scaling and benchmarking self-supervised visual rep-
resentation learning. In /CCV, 2019. 3, 4

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual repre-

[8

—

9

—

[10]

(11]

(12]

(13]

[14]

[15]

sentation learning. In CVPR, 2020. 4

Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Gir-
shick. Mask R-CNN. In ICCV, 2017. 4

Ishan Misra and Laurens van der Maaten. Self-supervised
learning of pretext-invariant representations. In CVPR, 2020.
4

Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu.
Neural discrete representation learning. In NeurIPS, 2017. 4
Ali Razavi, Aaron van den Oord, and Oriol Vinyals. Generat-
ing diverse high-fidelity images with VQ-VAE-2. In NeurIPS,
2019. 4

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster R-CNN: Towards real-time object detection with region
proposal networks. In NeurlIPS, 2015. 4

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical
networks for few-shot learning. In NeurIPS, 2017. 2

Oriol Vinyals, Charles Blundell, Tim Lillicrap, and Daan
Wierstra. Matching networks for one shot learning. In
NeurlIPS, 2016. 1

Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen
Lo, and Ross Girshick. Detectron2, 2019. 4

