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1. Frame field learning details
1.1. Model architecture

We show in Fig. 1 how we add a frame field output to an
image segmentation backbone. The backbone can be any
(possibly pretrained) network as long as it outputs an F -
dimensional feature map ŷbackbone ∈ RF×H×W .

1.2. Losses
We define image segmentation loss functions below:

LBCE(y, ŷ) =
1

HW

∑
x∈I

y(x) · log(ŷ(x))

+ (1− y(x)) · log(1− ŷ(x)), (1)

LDice(y, ŷ) = 1− 2 · |y · y|+ 1

|y + y|+ 1
, (2)

Lint = α · LBCE(yint, ŷint) + (1− α) · LDice(yint, ŷint), (3)

Ledge = α · LBCE(yedge, ŷedge) + (1− α) · LDice(yedge, ŷedge), (4)

where 0 < α < 1 is a hyperparameter. In practice, α =
0.25 gives good results.

For the frame field, we show a visualization of the Lalign

loss in Fig. 2.

1.3. Handling numerous heterogeneous losses

We linearly combine our eight losses using eight co-
efficients, which can be challenging to balance. Because
the losses have different units, we first compute a normal-
ization coefficient N〈loss name〉 by computing the average of
each loss on a random subset of the training dataset using
a randomly-initialized network. Then each loss can be nor-
malized by this coefficient. The total loss is a linear combi-
nation of all normalized losses:
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where the λ〈loss name〉 coefficients are to be tuned. It is also
possible to separately group the main losses and the regu-
larization losses and have a single λ coefficient balancing
the two loss groups:

λLmain + (1− λ)Lregularization, (6)

with
Lmain =

Lint

Nint
+
Ledge

Nedge
+
Lalign

Nalign
, (7)

Lregularization =
Lalign90

Nalign90
+
Lsmooth

Nsmooth

+
Lint align

Nint align
+
Ledge align

Nedge align
+
Lint edge

Nint edge
. (8)



Figure 1: Details of our network’s architecture with the addition of the frame field output.
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Figure 2: Visualization of the frame field align loss Lalign

(in blue) for a certain configuration of {−u, u,−v, v} and
all possible ground truth z = eiθτ directions.

In practice we started experiments with the single-
coefficient version with λ = 0.75 and then used the multi-
coefficient version to have more control by setting λint =
λedge = 10, λalign = 1, λalign90 = 0.2, λsmooth = 0.005,
λint align = λedge edge = λint edge = 0.2.

1.4. Training details

We do not heavily tune our hyperparameters: once we
find a value that works based on validation performance
we keep it across ablation experiments. We employ early
stopping for the U-Net16 and DeepLabV3 models (25 and

15 epochs, respectively) chosen by first training the full
method on the training set of the CrowdAI dataset, choosing
the epoch number of the lowest validation loss, and finally
re-training the model on the train and validation sets for that
number of total epochs.

Segmentation losses Lint and Ledge are both a combina-
tion of 25% cross-entropy loss and 75% Dice loss. To bal-
ance the losses in ablation experiments, we used the single-
coefficient version with λ = 0.75. For our best perform-
ing model UResNet101 we used the multi-coefficients ver-
sion to have more control by setting λint = λedge = 10,
λalign = 1, λalign90 = 0.2, λsmooth = 0.005, λint align =
λedge edge = λint edge = 0.2. The U-Net16 was trained on
4 GTX 1080Ti GPUs in parallel on 512×512 patches and a
batch size of 16 per GPU (effective batch size 64). For all
training runs, we compute for each loss its normalization
coefficient N〈loss name〉 on 1000 batches before optimizing
the network.

Our method is implemented in PyTorch [14]. On the
CrowdAI dataset, training takes 2 hours per epoch on 4
1080Ti GPUs for the U-Net16 model and 3.5 hours per
epoch for the DeepLabV3 backbone on 4 2080Ti GPUs.
Inference with the U-Net16 on a 5000× 5000 image (re-
quires splitting into 1024×1024 patches) takes 7 seconds
on a Quadro M2200 (laptop GPU).

2. Frame field polygonization details

We expand here on the algorithm and implementation
details of our frame field polygonization method.



2.1. Data structure

Our polygonization method needs to be initialized with
geometry, which is then optimized to align to the frame field
(among other objectives we will present later).

In the case of extracting individual buildings, we use the
marching squares [10] contour finding algorithm on the pre-
dicted interior probability map yint with an isovalue ` (set to
0.5 in practice). The result is a collection of contours {Ci}
where each contour is a sequence of 2D points:

Ci =
(
(r0, c0), (r1, c1), ..., (rni−1, cni−1)

)
.

where ri, ci ∈ R correspond to vertex i’s position along
the row axis and the column axis respectively (they are not
restricted to being integers). A contour is generally closed
with (r0, c0) = (rni−1, cni−1), but it can be open if the cor-
responding object touches the border of the image (there-
fore start and end vertices are not the same).

In the case of extracting buildings with potential ad-
joining buildings sharing a common wall, we extract the
skeleton graph of the predicted edge probability map yedge.
This skeleton graph is a hyper-graph made of nodes con-
nected together by chains of vertices (i.e., polylines) called
paths (see Fig. 4 for examples). To obtain this skeleton
graph, we first compute the skeleton image using the thin-
ning method [19] on the binary edge mask (computed by
thresholding yedge with ` = 0.5). It reduces binary ob-
jects to a one-pixel-wide representation. We then use the
Skan [12] Python library to convert this representation to a
graph representation connecting those pixels. The resulting
graph is a collection of paths that are polylines connecting
junction nodes together. We use an appropriate data struc-
ture only involving arrays (named tensors in deep learning
frameworks) so that it can be manipulated by the GPU. We
show in Fig. 3 an infographic of the data structure. A se-
quence of node coordinates “pos” holds the location of all
nodes i ∈ [0 . . n− 1] belonging to the skeleton:

pos =
(
(r0, c0), (r1, c1), ..., (rn−1, cn−1)

)
where n is the total number of skeleton pixels and (ri, ci) ∈
[0 . .H − 1] × [0 . .W − 1] correspond to the row num-
ber and column number, respectively (of skeleton pixel i).
The skeleton graph connects junction nodes through paths,
which are polylines made up of connected vertices. These
paths are represented by the “paths” binary matrix Pp,n
where element (i, j) is one if node j is in path i. This
Pp,n is sparse, and, thus, it is more efficient to use the CSR
(compressed sparse row) format, which represents a matrix
by three (one-dimensional) arrays respectively containing
nonzero values, the column indices and the extents of rows.
As Pp,n is binary we do not need the array containing non-
zeros values. The column indices array, which we name
“path index” holds the column indices of all “on” elements:

path index = (j0, j1, ..., jn−njunctions+ndegrees sum−1),

where njunctions is the total number of junction nodes,
ndegrees sum is the sum of the degrees of all junction nodes and
∀k ∈ [0 . . n− njunctions + ndegrees sum − 1], jk ∈ [0 . . n− 1].
The extents of rows array which we name “path delim”
holds the starting index of each row (it also contains an ex-
tra end element which is the number of non-zeros elements
n for easier computation):

path delim = (s0, s1, ..., sp) .

Thus, in order to get row i of Pp,n we need to look up
the slice (si, si+1) of path index. In the skeleton graph
case, this representation is also easily interpretable. In-
dices of path nodes are all concatenated in path index and
path delim is used to separate those concatenated paths.
And finally a sequence of integers “degrees” stores for each
node the number of nodes connected to it:

degrees = (d0, d1, ..., dn−1) .

As a collection of contours is a type of graph, in order
to use a common data structure in our algorithm, we also
use the skeleton graph representation for the contours {Ci}
given by the marching squares algorithm (note we could use
other contour detection algorithms for initialization). Each
contour is thus an isolated path in the skeleton graph.

In order to fully leverage the parallelization capabilities
of GPUs, the largest amount of data should be processed
concurrently to increase throughput, i.e., we should aim
to use the GPU memory at its maximum capacity. When
processing a small image (such as 300 × 300 pixels from
the CrowdAI dataset), only a small fraction of memory
is used. We thus build a batch of such small images to
process them at the same time. As an example, on a GTX
1080Ti, we use a polygonization batch size B = 1024
for processing the CrowdAI dataset, which induces a
significant speedup. Building a batch of images is very
simple: they can be concatenated together along an ad-
ditional batch dimensions, i.e., B images Ii ∈ R3×H×W

are grouped in a tensor I ∈ RB×3×H×W . This is the
case for the output segmentation probability maps as
well as the frame field. However, it is slightly more
complex to build a batch of skeleton graphs because of
their varying sizes. Given a collection of skeleton graphs
{(posi, degreesi, path indexi, path delimi)}i∈[..B−1], all
posi and degreesi are concatenated in their first dimension
to give batch arrays:

posbatch = [pos0, pos1, . . . , posB−1] ,

and:

degreesbatch = [degrees0, degrees1, . . . , degreesB−1].

All path indexi need their indices to be shifted by a certain
offset:

offseti =

i−1∑
k=0

|posk|,



Figure 3: Our data structure of an example skeleton graph. It represents two buildings with a shared wall, necessitating 3
polyline paths. Here nodes 0 and 4 are shared among paths and are thus repeated in path index. We can see path index
is a concatenation of the node indices in pos of the paths. Finally, path delim is used to store the separation indices in
path index of those concatenated paths. Indices of arrays are in gray.

with |posk| the number of points in posk, so that they
point to the new locations in posbatch and degreebatch.
They are then concatenated in their first dimension:
path indexbatch = [path index0 + offset0, . . . , path indexB−1 + offsetB−1].

In a similar manner, we concatenate all path delimi into
path delimbatch while taking care of adding the appropriate
offset. We then obtain a big batch skeleton graph which
is represented in the same way as a single skeleton graph.
In order to later recover individual skeleton graphs in the
batch, similar to path delim, we need a batch delim array
that stores the starting index of each individual skeleton
graph in the path delim array (it also contains an extra end
element which is the total number of paths in the batch
for easier computation). While we apply the optimization
on the batched arrays posbatch, path indexbatch, and
so on, for readability we will now refer to them as pos,
path index and so on. Note that in the case of big images
(such as 5000 × 5000 pixels from the Inria dataset), we
set the batch size to 1, as the probability maps, the frame
field, and the skeleton graph data structure fills the GPU’s
memory well.

At this point the data structure is fixed, i.e., it will not
change during optimization. Only the values in pos will

be modified. This data structure is efficiently manipulated
in parallel on the GPU. All the operations needed for the
various computations performed in the next sections are run
in parallel on the GPU.

We compute other tensors from this minimal data struc-
ture which will be useful for computations:
• path pos = pos[ path index ] which expands the posi-

tions tensor for each path (junction nodes are thus re-
peated in path pos).

• A batch tensor which for each node in pos batch stores
the index i ∈ [0 . . B − 1] of the individual skeleton this
node belongs to. This is used to easily sample the batched
segmentation maps and the batched frame fields at the po-
sition of a node.

2.2. Active Skeleton Model

We adapt the formulation of the Active Contours Model
(ACM) to an Active Skeleton Model (ASM) in order to opti-
mize our batch skeleton graph. The advantage of using the
energy minimization formulation of ACM is to be able to
add extra terms if needed (we can imagine adding regular-
ization terms to, e.g., reward 90°corners, uniform curvature,
and straight walls).
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Figure 4: ASM optimization steps (zoomed example). Frame field in blue crosses.

Energy terms will be parameterized by the node posi-
tions p ∈ pos, which are the variables being optimized. The
first important energy term isEprobability which aims to fit the
skeleton paths to the contour of the building interior proba-
bility map yint(v) at a certain probability level ` (which we
set to 0.5 in practice, just like the isovalue used to initialize
the contours by marching squares):

Eprobability =
∑

p∈pos
(yint(p)− l)2 .

The value yint(p) is computed by bilinear interpolation so
that gradients can be back-propagated to p. Additionally,
yint(p) implicitly entails using the batch array to know
which slice in the batch dimension of yint ∈ RB×1×H×W
to sample p from. This will be the case anytime batched
image-like tensors are sampled at a point p. In the case of
the marching squares initialization, this Eprobability energy is
actually zero at the start of optimization, since the initial-
ized contour already is at isovalue `. For the skeleton graph

initialization, paths that trace inner walls between adjoining
buildings will not be affected since the gradient is zero in a
neighborhood of homogeneous values (i.e., yint = 1 inside
buildings).

The second important energy term is Eframe field align

which aligns each edge of the skeleton paths to the frame
field. Edge vectors are computed in parallel as:

e = path pos [1:] − path pos[:−1] ,

while taking care of removing from the energy computation
“hallucinated” edges between paths (using the path delim
array). For readability we call E the set of valid edge vec-
tors. For each edge vector e ∈ E, we refer to its direc-
tion as edir = e

‖e‖ . We also refer to its center point as
ecenter = 1

2 (path pos [1:] + path pos [:−1]). The frame
field align term is defined as:

Eframe field align =
∑
e∈E
|f(edir; c0(ecenter), c2(ecenter))|2 .



This is the term that disambiguates between slanted walls
and corners and results in regular-looking contours.

The last important term is the internal energy termElength

which ensures node distribution along paths remains homo-
geneous as well as tight:

Elength =
∑
e∈E
|e|2 .

All energy terms are then linearly combined:
Etotal = λprobabilityEprobability + λframe field alignEframe field align + λlengthElength .

In practice, the final result is robust to different values of
coefficients for each of these three energy terms, and we
determine them using a small cross-validation set. The
total energy is minimized with the RMSprop [18] gradient
descent method with a smoothing constant γ = 0.9 with an
initial learning rate of η = 0.1 which is exponentially de-
cayed. The optimization is run for 300 iterations to ensure
convergence. Indeed since the geometry is initialized to lie
on building boundaries, it is not expected to move more
than a few pixels and the optimization converges quickly.
See Fig. 4 for a zoomed example of different stages of the
ASM optimization.

2.3. Corner-aware polygon simplification

Figure 5: Corner detection using the frame field. For each
vertex, the frame field is sampled at that location (with near-
est neighbor) and represented by the {±u,±v} vectors.

We now have a collection of connected polylines that
forms a planar skeleton graph. As building corners should
not be removed during simplification, only polylines be-
tween corners are simplified. For the moment our data
structure encodes a collection of polyline paths connecting
junction nodes in the skeleton graph. However, a single path
can represent multiple walls. It is the case for example of
an individual rectangular building: one path describes its
contour while it has 4 walls. In order to split paths into
sub-paths each representing a single wall we need to detect
building corners along a path and add this information to
our data structure. This is another reason to use a frame

|〈eprev, up〉| < |〈eprev, vp〉| |〈eprev, vp〉| < |〈eprev, up〉|
|〈enext, up〉| < |〈enext, vp〉| False True
|〈enext, vp〉| < |〈enext, up〉| True False

Table 1: Summary table for deciding if node i with position
p = path pos [ i ] is a corner (True) or not (False).

field input, as it implicitly models corners: at a given build-
ing corner, there are two tangents of the contour. The frame
field learned to align one of u or −u to the first tangent
and one of v or −v to the other tangent. Thus when walk-
ing along a contour path if the local direction of walking
switches from ±u to ±u or vice versa, it means we have
come across a corner, see Fig. 5 for an infographic for cor-
ner detection. Specifically for each node i with position
p = path pos [ i ] its preceding and following edge vectors
are computed as: eprev = path pos [ i ] − path pos[ i−1]
and enext = path pos [ i+1] − path pos[ i ]. As the frame
field is represented by the coefficients {c0, c2} at each pixel,
we first need to convert it to its {u, v} representation with
the simple formulas of eq. 9.

{
c0 = u2v2

c2 = −(u2 + v2)
⇐⇒


u2 = − 1

2

(
c2 +

√
c22 − 4c0

)
v2 = − 1

2

(
c2 −

√
c22 − 4c0

)
.

(9)

The frame field is sampled at that position p: up =
u(p) and vp = v(p). Alignment between eprev, enext and
±up,±vp is measured with the absolute scalar product so
that it is agnostic to the sign of u and v. For example align-
ment between eprev and ±up is measured by |〈eprev, up〉|
and if |〈eprev, up〉| < |〈eprev, vp〉| then eprev is aligned to±v
and not ±u. The same is done for enext. Finally if eprev

and eprev do not align to the same frame field direction, then
node i is a corner. As a summary for corner cases we refer
to Table. 1.

Because the path positions are concatenated together in
the path pos tensor, some care must be taken for nodes at
the extremities of paths (i.e., junction nodes) as they do not
have both preceding and following edges. The path delim
tensor is used to mark those nodes as not corners. Once
corners are detected we obtain a tensor is corner index =
{i | node i is a corner} which can be used to separate paths
into sub-paths each representing a single wall by merging
is corner index with the path delim tensor through con-
catenation and sorting.

Now that each sub-path polyline represents a single
wall between two corners, we apply the Ramer-Douglas-
Peucker [15, 3] simplification algorithm separately on all
sub-path polylines. As explained in the related works, the
simplification tolerance ε represents the maximum Haus-
dorff distance between the original polyline and the simpli-
fied one.

2.4. Detecting building polygons in planar graph

To obtain our final output of building polygons, the col-
lection of polylines is polygonized by detecting connecting



regions separated by the polylines. A list of polygonal cells
that partition the entire image is thus obtained. The last step
computes a building probability value for each polygon us-
ing the predicted interior probability map and removes low-
probability polygons (in practice those that have an average
probability less than 50%).

3. Experimental setup details
3.1. Datasets

CrowdAI dataset. The CrowdAI dataset [16] originally
has 280741 training images, 60317 validation images, and
60697 test images. All images are 300×300 pixels with un-
known ground sampling distance, although they are aerial
images. As the ground truth annotations of the test set are
unreleased because of the challenge, we use the original
validation set as our test set and discard the original test
images as is commonly done by other methods comparing
themselves with that dataset [7, 6]. We then use 75% of the
original training images as our initial training set and 25%
for validation. Out final models are then trained on the en-
tire original training set with hyperparameters selected us-
ing our validation test.

Inria dataset. The Inria dataset [11] has 360 aerial im-
ages of 5000 × 5000 pixels each with a Ground Sampling
Distance of 30 cm. In total, 10 cities from Europe and the
USA are represented, each city having 36 images. Each im-
age is accompanied by its building ground truth mask with
an average of a few thousand buildings per image. This
dataset provides building ground truth in the form of bi-
nary mask images for each image. However, our method
requires the ground truth annotations to be in vector format
(polygons) so that the ground truth for the frame field can
be computed: the tangent angle θτ used in Lalign. We thus
build two dataset variants with vector annotations.

The first variant is the Inria OSM dataset for which
we discard completely the original ground truth masks
and instead download annotations from Open Street Map
(OSM) [13]. Because the OSM annotations are not always
aligned, we align them using [4]. We randomly split the im-
ages into train (50%), validation (25%), and test (25%) sets.
Because the OSM annotations have a lot of missing build-
ings in certain images, our test results on this dataset are
somewhat skewed. Thus, for the test images, we manually
select those with few missing buildings in the annotations,
giving us 54 test images in total.

The second variant is the Inria Polygonized dataset for
which we take the original ground truth masks and convert
them to polygon format with our polygonization method. In
this setting, the input to our network (we used the small U-
Net16) is just the binary mask and the output a frame field.
In order to train this model, we need a dataset of (binary

masks, θτ ) pairs. We used the OSM annotations of the Inria
OSM dataset, which we rasterized to obtain the input binary
masks and which we used to compute θτ . After our model
finished training, we applied our frame field polygonization
method on the original binary masks of the Inria dataset
and their predicted frame fields. The new Inria polygonized
dataset is thus made of (RGB image, polygonized annota-
tions) pairs. We thus obtain the same ground truth as the
original dataset but in vector format. This allows us to only
use the same ground truth data as the other competitors of
the Inria Aerial Image Labeling challenge and thus we can
directly compare our method to them. Thus we keep the
original train and test splits which do not have any cities
overlap and tests cross-city generalization (the principal aim
of the associated challenge). We then split the original train
split into our train (75%) and validation (25%) splits.

Private dataset. The private dataset is a large-scale
dataset of satellite images built by a company we collab-
orate with. The images in this dataset were acquired us-
ing three types of satellites (Pleiades, WorldView, and Geo-
Eye) over different types of cities (dense, industrial, resi-
dential areas, and city centers). We uniformized the im-
age sampling at 50 cm/pixel spatial resolution, with 3-band
RGB images. 57 images of 30 cities across 5 continents are
present in the training dataset. The size of images varies
from around 2000×2000 pixels to 20000×20000 pixels.
The total dataset covers an area spanning around 700 km2.
The building outline polygons were manually labeled pre-
cisely by an expert. Satellite images are more challenging
than aerial images (such as the CrowdAI and Inria images)
because they are less clear due to atmospheric effects. This
dataset also contains much more varied images compared to
CrowdAI and Inria, making up for its smaller size. We pre-
process the training images by splitting them into smaller
512×512 pixel patches. We then keep 90% of patches for
training and 10% for validation.

3.2. Metrics

IoU, AP and AR. The usual metric for the image seg-
mentation task is Intersection over Union (IoU) which com-
putes the overlap between a predicted segmentation and the
ground truth annotation. The IoU is then used to compute
other metrics such as the MS COCO [8] Average Precision
(AP and its variants AP50, AP75, APS , APM , APL) and Av-
erage Recall (AR and its variants AR50, AR75, ARS , ARM ,
ARL) evaluation metrics. Precision and recall are computed
for a certain IoU threshold: detections with an IoU above
the threshold are counted as true positives whiles others are
false positives and ground truth annotations with an IoU be-
low the threshold are false negatives. Each object is also
given a score value representing the model’s confidence in
the detection. In our case, it is the mean value of the in-



terior probability map inside the detection. The Precision-
Recall curve can be obtained by varying the score threshold
that determines what is counted as a model-predicted posi-
tive detection. Average Precision (AP) is the average value
of the precision across all recall values and Average Recall
(AR) is the maximum recall given a fixed number of detec-
tions per image (100 in our case). Finally, the mean Aver-
age Precision (mAP) is calculated by taking the mean AP
over multiple IoU thresholds (from 0.50 to 0.95 with a step
of 0.05). Likewise for the mean Average Recall (mAR).
Following MS COCO’s convention, we make no distinction
between AP and mAP (and likewise AR and mAR) and as-
sume the difference is clear from context. The AP50 variant
is AP computed with a single IoU threshold of 50% (simi-
larly for AP75, AR50, and AR75). The APS , APM and APL
variants are AP computed for small (area < 322), medium
(322 < area < 962) and large (area > 962) objects respec-
tively (like-wise for the AR equivalents).

Max tangent angle error. We introduce a max tangent
angle error metric between predicted polygons and the
ground truth to capture the regularity of the predicted con-
tours. A max tangent angle scalar error is computed for each
predicted contour. Only predicted contours with at least
50% overlap with the ground truth are selected, so that their
measure makes sense. Each predicted contour is first sam-
pled homogeneously with points {Pi}i∈[1..n] (specifically a
point is sampled every 0.1 pixel). Then the Pi points are
projected to the ground truth, meaning for each Pi we find
the closest point Qi belonging to the ground truth annota-
tion. For both sequences of points Pi andQi, corresponding
normed tangent directions are computed as:

T (Pi) =
Pi+1 − Pi
‖Pi+1 − Pi‖

and T (Qi) =
Qi+1 −Qi
‖Qi+1 −Qi‖

.

The angle differences between the two are computed from
the scalar product:

∆θi = cos−1(〈T (Pi), T (Qi)〉) .

Before computing the maximum angle error maxi ∆θi
along the whole contour, some angle errors ∆θi need to
be filtered out as they are invalid. Angle error invalidity
is due to the projection step. Indeed around ground truth
corners, part of the predicted contour will we be squashed
to be zero-length for example. Another issue is when Pi
and Pi+1 are projected to two different ground truth poly-
gon sides: the projected edge Pi+1 − Pi does not represent
a ground truth tangent anymore. We thus filter out tangents
whose projection is stretched more than a factor of 2, i.e.,
we keep all ∆θj ,∀j ∈ V where V = {j | j ∈ [1 . . n], 12 <
‖Qi+1−Qi‖
‖Pi+1−Pi‖ < 2}. The final max tangent angle error for that

Method Mean max angle error ↓
UResNet101 (no field), simple poly. 51.9°
UResNet101 (with field), simple poly. 45.1°
U-Net variant [2], ASIP poly. [6] 44.0°
U-Net variant [2], UResNet101 our poly. 36.6°
Zorzi et al. [20] poly. 36.8°
UResNet101 (no Lsmooth), our poly. 33.6°
UResNet101 (no Lint align and Ledge align), our poly. 33.5°
UResNet101 (no Lint edge), our poly. 33.4°
UResNet101 (no Lalign90), our poly. 33.2°
PolyMapper [7] 33.1°
UResNet101 (with field), our poly. 31.9°

Table 2: Mean max tangent angle errors over all the original
validation polygons of the CrowdAI dataset [16].

contour is then:

Emax tangent angle = max
j∈V

∆θj .

As each contour gives a scalar error, we aggregate all the
errors for a certain dataset by averaging this max tangent
angle error metric.

4. Additional results
4.1. CrowdAI dataset

4.1.1 Complexity vs. fidelity

For the polygon complexity/fidelity trade-off ablation study
we plot the AP and AR scores for difference simplification
tolerance values ε on the CrowdAI dataset.

We perform an analysis of the polygonization complex-
ity/fidelity trade-off by changing the tolerance value ε of
the baseline simplification method and our corner-aware
method. Fig. 6a shows that preventing the removal of build-
ing corners ensures key points of the contours and the global
shape of the building remain intact even with extreme sim-
plification tolerance values. We also plot the AP and AR
values of both methods while increasing the tolerance value
ε in Fig. 6. As expected the score of our method does not
drop, unlike the simple polygonization method.

Our polygonization method allows the complexity-to-
fidelity ratio to be tuned with the easy-to-interpret tolerance
value ε of the Ramer-Douglas-Peucker algorithm, unlike
ASIP [6], which uses a non-intuitive parameter λ to balance
complexity and fidelity energies during polygonal partition
optimization. Finally, PolyMapper [7] does not have the
ability to tune the complexity-to-fidelity ratio.

4.1.2 Ablation study

We visualize the predicted classification maps from each ab-
lation study for an example test sample in Fig. 7. Both for
the U-Net16 and DeepLab101 backbones, the (full) method
yields more regular classification maps with sharper cor-
ners compared to (no field). Additionally, only learning the



Si
m

pl
e

po
ly

.
O

ur
sp

(a) Effect of increasing the simplification tolerance value ε from 0.5 px (left), then 2 px, then 8 px and 16 px (right).
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(b) AP for both our corner-aware method and the simple poly-
gonization for various tolerance value ε.
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(c) AR for both our corner-aware method and the simple poly-
gonization for various tolerance value ε.

Figure 6: Comparison between the baseline simplification algorithm with our corner-aware one. Both take the same classifi-
cation map as input, but the baseline does not use the frame field. The corner-aware simplification guarantees that no corners
will be simplified, regardless of the tolerance value ε.

frame field with (no coupling losses) is insufficient, as can
be seen in Fig. 7d.

We observe the effect of only optimizing for IoU when
removing coupling losses: we see that it does not impact
AP and AR metrics in Table 3, while in Fig. 7 the (full) seg-
mentations are clearly sharper compared to the (no coupling
losses) ones.

In terms of AP and AR metrics, adding a frame field im-
proves the final score (full) compared to (no field) for all
backbones: U-Net16, DeepLab101 and UResNet101 (see
Table 3).

We also visually compare our frame field polygonization
method with the simple baseline polygonization algorithm
(both when the frame field is computed and when it is not)
in Fig. 8. The UResNet101 without frame field learning
and whose results are polygonized with the simple method
performs the worst (see Fig. 8c), with the UResNet101
with frame field learning and whose results are polygonized
with the simple method performs already much better (see
Fig. 8b). Our UResNet101 with frame field learning and
whose results are polygonized with our frame field poly-
gonization method performs the best, with better corners



Method AP ↑ AP50 ↑ AP75 ↑ APS ↑ APM ↑ APL ↑ AR ↑ AR50 ↑ AR75 ↑ ARS ↑ ARM ↑ ARL ↑
U-Net16 (no field), mask 50.9 74.3 59.5 24.5 65.6 66.3 55.9 77.9 64.7 29.8 71.2 74.6
U-Net16 (no field), simple poly. 50.5 76.6 59.1 22.6 66.2 69.3 54.8 78.5 63.5 26.8 71.2 75.2
U-Net16 (no coupling losses), mask 53.7 77.7 62.8 25.7 69.0 68.9 57.7 79.2 66.4 31.0 73.4 74.4
U-Net16 (with field), mask 53.6 77.8 62.8 25.1 69.4 69.5 57.6 79.0 66.4 29.7 74.1 75.2
U-Net16 (with field), simple poly. 49.6 73.8 58.1 21.2 65.5 67.0 53.8 75.6 62.2 25.5 70.5 72.5
U-Net16 (with field), our poly. 50.5 76.6 59.3 20.4 67.4 69.0 55.3 78.1 64.0 25.7 72.8 75.0
DeepLab101 (with field) 54.9 78.1 64.9 25.6 71.2 76.8 58.7 79.8 68.1 29.5 75.8 81.6
DeepLab101 (no field) 52.8 75.2 61.8 26.1 67.7 75.0 57.8 78.4 66.7 30.3 73.7 81.8
UResNet101 (no field), mask 62.4 86.7 72.7 36.2 76.3 81.1 67.5 90.5 77.4 46.8 79.5 86.5
UResNet101 (no field), simple poly. 61.1 87.4 71.2 35.1 74.5 82.3 64.7 89.4 74.1 41.7 77.9 85.7
UResNet101 (with field), mask 64.5 89.3 74.6 40.3 76.6 84.0 68.1 91.0 77.7 47.5 80.0 86.7
UResNet101 (with field), simple poly. 61.7 87.7 71.5 35.8 74.9 83.0 65.4 89.9 74.6 42.6 78.6 85.9
UResNet101 (with field), our poly. 61.3 87.5 70.6 34.0 75.1 83.1 65.0 89.4 73.9 41.2 78.7 86.0
UResNet101 (no Lalign90), mask 64.2 88.6 74.6 40.0 76.4 83.7 67.8 90.9 77.5 47.1 79.7 86.4
UResNet101 (no Lalign90), simple poly. 61.4 87.7 71.4 35.4 74.5 82.7 65.0 89.7 74.4 42.1 78.2 85.6
UResNet101 (no Lalign90), our poly. 61.1 87.5 70.6 34.1 74.9 82.8 64.7 89.3 73.8 41.2 78.4 85.6
UResNet101 (no Lint edge), mask 63.8 88.5 74.4 39.6 75.9 83.3 67.3 90.7 77.0 46.6 79.3 86.2
UResNet101 (no Lint edge), simple poly. 61.0 87.6 70.6 35.2 74.1 82.4 64.6 89.5 74.0 41.7 77.8 85.3
UResNet101 (no Lint edge), our poly. 60.9 87.4 70.5 33.7 74.4 82.5 64.4 89.1 73.4 40.7 78.1 85.4
UResNet101 (no Lint align and Ledge align), mask 64.7 89.3 74.7 40.5 76.7 84.2 68.2 91.0 77.9 47.6 80.1 86.8
UResNet101 (no Lint align and Ledge align), simple poly. 61.8 87.7 71.5 35.8 74.9 83.3 65.4 89.9 74.7 42.5 78.6 86.0
UResNet101 (no Lint align and Ledge align), our poly. 61.5 87.5 71.3 34.2 75.2 83.4 65.0 89.5 74.0 41.3 78.8 86.1
UResNet101 (no Lsmooth), mask 64.2 88.6 74.6 40.1 76.5 83.5 67.8 90.8 77.5 47.2 79.8 86.1
UResNet101 (no Lsmooth), simple poly. 61.6 87.7 71.5 35.7 74.8 82.6 65.2 89.7 74.5 42.3 78.4 85.4
UResNet101 (no Lsmooth), our poly. 61.3 87.5 70.7 34.1 75.0 82.7 64.8 89.3 73.9 41.1 78.6 85.5
U-Net variant [2], UResNet101 our poly. 67.0 92.1 75.6 42.1 84.2 92.7 73.2 93.5 81.1 48.8 87.3 95.4
Mask R-CNN [5] [17] 41.9 67.5 48.8 12.4 58.1 51.9 47.6 70.8 55.5 18.1 65.2 63.3
PANet [9] 50.7 73.9 62.6 19.8 68.5 65.8 54.4 74.5 65.2 21.8 73.5 75.0
PolyMapper [7] 55.7 86.0 65.1 30.7 68.5 58.4 62.1 88.6 71.4 39.4 75.6 75.4
U-Net variant [2], ASIP poly. [6] 65.8 87.6 73.4 39.3 87.0 91.9 78.7 94.3 86.1 57.2 91.2 97.6

Table 3: AP and AR results on the CrowdAI dataset [16] for all polygonization experiments. (with field) refers to models
trained with our full frame field learning method. (no field) refers to models trained without any frame field output. “mask”
refers to the output raster segmentation mask of the network, “our poly.” refers to our frame field polygonization method, and
“simple poly.” refers to the baseline polygonization of marching squares followed by Ramer-Douglas-Peucker simplification.

using fewer vertices (see Fig. 8a). We can see our method
provides the missing information needed to resolve ambigu-
ous cases for polygonization and outputs more regular poly-
gons.

Finally Table 2 and 3 also hold results for additional ex-
periments of the ablation study which each remove a loss
during training. We observe that removing one of those
losses does not impact the AP or AR result of the final poly-
gonization. However, if one of those loss is removed we
observe a performance drop in terms of max tangent angle
errors, with result polygons for all such experiments hav-
ing a mean error slightly higher than PolyMapper (at 33.1°)
while our full method achieves a mean error of 31.6°.

4.1.3 Additional runtimes

We report here the average runtimes for a 300×300 pixel
patch of the different steps of the building polygonization
pipeline of Zorzi et al. [20] along with corresponding GPU
memory allocation (GTX 1080Ti):
1. segmentation: 0.152s with 20% GPU memory,
2. regularization: 0.269s with 12% GPU memory,
3. mask2poly: 0.257s with 19% GPU memory.
As we optimized our own method for maximum throughput,
we want to compare to previous methods assuming perfect

Method Time (sec) ↓ Hardware
PolyMapper [7] 0.38 GTX 1080Ti

ASIP [6] 0.15 Laptop CPU
Zorzi et al. [20] 0.11 GTX 1080Ti

Ours 0.04 GTX 1080Ti

Table 4: Average time to extract buildings from a 300×300
pixel patch. Ours refers to UResNet101 (with field), our
poly. ASIP’s time does not include model inference.

parallelization (as is done for the ASIP method in the main
paper). Zorzi et al. would then get these runtimes:
1. segmentation: 0.0304s,
2. regularization: 0.03228s,
3. mask2poly: 0,04883s,
for a total of 0,11151s. For comparison we include the
runtimes of all methods in Table 4, where we observe our
method being competitive compared to previous works.

4.2. Inria OSM dataset

We show bigger crops of the result of our frame field
polygonization in Fig. 9, 10, and 11. We observe the abil-
ity of our method to separate adjoining buildings, handle
complex shapes with big buildings having non-rectangular



(a) Input (b) U-Net16 (full): trained with frame field (c) U-Net16 (no field): trained without
frame field

(d) U-Net16 (no coupling losses): trained
with frame field but without coupling losses

(e) DeepLab101 (full): trained with frame
field

(f) DeepLab101 (no field): trained without
frame field

Figure 7: Classification predictions on a test sample for all training ablation studies.

shapes and possibly holes.

4.3. Inria polygonized dataset

We show a larger result comparison to other methods on
the Inria Polygonized dataset in Fig 12, including the two
best methods on the public leaderboard1. While the result
from “Eugene Khvedchenya” and ICTNet acheive an mIoU
over 80%, they detect buildings with segmentation masks
that need polygonization. We thus used the simple polygo-
nization method which follows the boundaries in the seg-
mentation raster image. Their results have blob-like fea-
tures, with rounded corners and non-regular contours.

In order to compare to the ASIP polygonization method,
we started to run the ASIP algorithm on the 180 output
probability maps of our network, corresponding to the 180
test images. However the ASIP method is not well-suited
for such big images (5000×5000 pixels) with thousands of

1https://project.inria.fr/aerialimagelabeling/leaderboard/

buildings, requiring a very high number of iterations (that
we set to 10000). The runtime of ASIP varies greatly de-
pending on the building density of images. For the most
dense ones, it did not finish within a day of computation,
making it impractical to run on the whole test dataset. As
such we compare to the ASIP method only on the CrowdAI
dataset.

4.4. Private dataset

Because training on the private dataset must be done on
a restricted computer with limited access, we only train two
models: U-Net16 (full) and U-Net16 (no field) until valida-
tion loss converges (around 1500 epochs). First we display
segmentation raster outputs in Fig 13, 14 and 15 and final
polygonal buildings in Fig 16, 17 and 18. Satellite images
being more challenging than aerial images, non-regularized
segmentations (no field) appear even more rounded than
usual. However, our frame field learning and polygoniza-



(a) Ours: UResNet101 with frame field learning (full) and frame field polygonization

(b) UResNet101 with frame field learning and simple polygoniza-
tion

(c) UResNet101 (no field) learning and simple polygonization

Figure 8: Extracted polygons with: our (full) frame field learning and polygonization method; our frame field learning and
simple polygonization method; the (no field) learning and simple polygonization baseline. A low tolerance of ε = 0.125 pixel
was chosen to compare precise contours.

tion (with field) still outputs clean, regular geometry, and
separates adjoining buildings.



U-Net16 (no field), simple poly. Ours: U-Net16 (with field), our poly.

Figure 9: Crop of results on the “sfo19” image from the Inria OSM dataset.



U-Net16 (no field), simple poly. Ours: U-Net16 (with field), our poly.

Figure 10: Crop of results on the “innsbruck19” image from the Inria OSM dataset.



U-Net16 (no field), simple poly. Ours: U-Net16 (with field), our poly.

Figure 11: Crop of results on the “vienna36” image from the Inria OSM dataset.



Eugene Khvedchenya1, simple poly. ICTNet [1], simple poly.

Zorzi et al. [20] poly. Ours: UResNet101 (with field), our poly.

Figure 12: Crop of results on an Inria Polygonized dataset test image.



U-Net16 (no field) Ours: U-Net16 (with field)

Figure 13: Crop results on the “Egypt” test image of the private dataset.



U-Net16 (no field) Ours: U-Net16 (with field)

Figure 14: Crop results on the “Bangkok” test image of the private dataset.



U-Net16 (no field) Ours: U-Net16 (with field)

Figure 15: Crop results on the “Chile” test image of the private dataset.



U-Net16 (no field), simple poly. Ours: U-Net16 (with field), our poly.

Figure 16: Crop results on the “Egypt” test image of the private dataset.



U-Net16 (no field), simple poly. Ours: U-Net16 (with field), our poly.

Figure 17: Crop results on the “Bangkok” test image of the private dataset.



U-Net16 (no field), simple poly. Ours: U-Net16 (with field), our poly.

Figure 18: Crop results on the “Chile” test image of the private dataset.
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