
The Lottery Ticket Hypothesis for Object Recognition: Supplementary Material

Sharath Girish**

sgirish@cs.umd.edu

Shishira R Maiya*

shishira@umd.edu

Kamal Gupta
kampta@umd.edu

Hao Chen
chenh@umd.edu

Larry Davis
lsd@umiacs.umd.edu

Abhinav Shrivastava
abhinav@cs.umd.edu

University of Maryland, College Park

We provide additional details for some of the experi-
ments presented in the paper. In particular, we provide com-
parison with a simpler ImageNet ticket transfer alternative
in Section A, analyse the transfer of tickets across down-
stream tasks in Section B, compare the different errors made
by dense and pruned models in Section C, verify the faster
convergence of sparser models in Section D and finally an-
alyze the disk space and number of compute operations in
Section E.

A. Mask Transfer Without Retraining
In Section 4.2, we analyzed the effects of transferring

tickets only for the ImageNet trained backbones. While
this deals with transferring the ticket mask as well as val-
ues, we further analyze whether transferring only the mask
provides winning tickets for these tasks using the method-
ology from [3]. We use the default ImageNet weights in the
ResNet-18 and ResNet-50 backbone and keep the top p%
of the weights in convolutional layers while setting the rest
to zeros and maintaining it throughout the training of the
entire network. We refer to this method as ‘Mask Transfer’.
Since training the backbone on much larger ImageNet data
is performed only once, ‘Mask Transfer’ is a much cheaper
or computationally efficient way of obtaining tickets from
parent task. We observe that behavior of ‘Mask Transfer‘
is similar to the ‘Transfer Ticket‘ obtained by method dis-
cussed in Section 4.2 where the sparse subnetwork weights
are fully retrained on ImageNet. Either cases are outper-
formed by direct pruning on the downstream tasks. The
results are summarized in Figure 1 (ResNet-18) and Table 1
(ResNet-50).

B. Do tickets transfer from one task to another
We showed that ImageNet tickets and/or masks trans-

fer to a limited extent to downstream tasks. In this sec-
tion, we further study whether the tickets obtained from

*Equal contribution

24

26

28

30

32
Object Detection

24

26

28

m
ea

n
A

ve
ra

ge
 P

re
ci

si
on

Instance Segmentation

0 5 10 15 20 25 30 35 40
Network Sparsity (% pruned)

56

57

58

59

60
Keypoint Estimation

 Unpruned Transfer Ticket Mask Transfer Direct Pruning via LTH

Figure 1: Transferring ImageNet backbone tickets to object recognition
tasks vs. Direct pruning via LTH on the object recognition tasks. We ex-
periment with two variations of transferring ImageNet backbone tickets to
object recognition tasks. ‘Transfer ticket’ refers to the case when we trans-
fer the lottery ticket backbone trained on ImageNet data to downstream
task (also discussed in the Section 4 of the paper). ‘Mask Transfer’ refers
to the case when ticket is transferred without retraining on ImageNet, i.e.,
only the relevant mask from backbone is transferred keeping ImageNet
weights the same. Best viewed in color.

the downstream task of detection/segmentation transfer to
keypoint estimation and vice-versa. We train Mask-RCNN
and Keypoint-RCNN respectively for the two tasks on the
COCO dataset while maintaining a sparsity level of 80%.
For both the tasks we transfer all values till box head mod-
ules, after which the model structures differ. The results are
shown in Table 2. We can observe that the drop is marginal
for the transfer of tickets between detection-segmentation to

Table 1: Performance on the COCO dataset for ImageNet backbones with mask transfer tickets for ResNet-50 at various levels of pruning. The results for
VOC are averaged over 5 runs with the standard deviation in parantheses.

Prune %
COCO Detection COCO segmentation COCO Keypoint VOC Detection

Network
sparsity

mAP AP50
Network
sparsity

mAP AP50
Network
sparsity

mAP AP50
Network
sparsity

mAP

90% 41.99% 35.46 56.51 41.99% 32.40 52.89 31.49% 62.27 84.93 65.37% 61.75(±0.22)

80% 37.33% 36.52 57.28 37.33% 33.53 54.15 28% 63.48 85.72 58.11% 67.30(±0.39)

50% 24.55% 37.99 58.83 24.55% 34.76 55.91 19.71% 64.21 86.32 36.32% 70.32(±0.23)

0% 0% 38.5 59.29 0% 35.13 56.39 0% 64.59 86.48 0% 71.21(±0.32)

Table 2: Effect of ticket transfer across tasks. Transferred tickets do worse
than direct training as expected, but still do not result in drastic drops in
the mAP or AP50 metrics. Here we do task transfer using the 80% pruned
model.

Target
task

Source
task

Network
sparsity

mAP AP50

Det
Det/Seg 78.4% 30.04 49.40
Keypoint 50.11% 23.94 41.08

Seg
Det/Seg 78.4% 27.90 46.68
Keypoint 50.11% 23.02 39.01

Keypoint
Det/Seg 76.98% 58.31 81.53
Keypoint 79.4% 59.34 82.36

keypoint task, as compared with the reverse case which reg-
isters a significant drop. This might be because the ticket is
obtained on the keypoint task which is trained only on ’hu-
man’ class and it fails to transfer well for the detection task
which uses the entire COCO dataset.

C. Error analysis on downstream tasks
The mAP score provides us a good way to summarize

the performance of an object recognition model with a sin-
gle number. But it hides a lot of information regarding what
kind of mistakes the model is making. Do the sparse subnet-
works obtained by LTH make same mistakes as the dense
models? In order to answer this question, we consider a
dense Mask R-CNN model with ResNet-50 backbone and a
sparse Mask R-CNN model with 20% of the parameters ob-
tained via LTH. Both the models achieve same performance
on downstream tasks as also discussed in Section 4.2 of the
paper.

C.1. Object Detection and Instance Segmentation

We resort to a toolbox from [1] to analyze object de-
tection and instance segmentation errors. We consider 5
main sources of errors in object detection. (i) ‘Cls’ refers to
an error corresponding to miss-classification of a bounding
box by a model, (ii) ‘Loc’ refers to the case when bounding
box is classified properly but not localized properly, (iii)

(a) Unpruned model (b) Pruned model

Figure 2: Error analysis of unpruned vs. pruned on object detection. The
error types of unpruned and pruned models are nearly the same.

‘Dupe’ corresponds to the errors when model makes mul-
tiple predictions at the same location, (iv) ‘Bkgd’ are the
cases when background portion of the image (with no ob-
jects) are tagged as an object, and finally (v) ‘Missed’ cases
when the objects are not detected by the model.

Figures 2 and 3 summarize the analysis of detection and
segmentation errors obtained for dense model as compared
to a sparse model (with only 20% of the weights). While
in the case of object detection, the performance of both the
models is identical, subtle differences emerge in case of seg-
mentation where sparse model makes fewer localization er-
rors but higher background errors.

C.2. Keypoint Estimation

We use [4] to perform a similar analyses for sparse and
dense models on the task of keypoint estimation. In case of
keypoints, we compute the Precision Recall Curve of the
model while removing the impact of individual errors of
following kinds — (i) ‘Miss’ - large localization errors, (ii)
‘Swap’ - confusion between same keypoint of two different
persons, (iii) ‘Inversion’ - confusion between two different
keypoints of the same person, (iv) ‘Jitter’ - small localiza-
tion error, and (v) ‘FP’ - background false positives. Fig. 5
summarizes the results. As in the previous case, it appears

(a) Unpruned model (b) Pruned model

Figure 3: Error analysis of unpruned vs. pruned on instance segmentation.
The error types of unpruned and pruned models are quite similar.

0 20 40 60 80
Sparsity %

50

100

150

Di
sk

 S
pa

ce
 (M

B)

Disk space
Det/Seg
Key

0 20 40 60 80
Sparsity %

70

75

80

M
AC

 (G
)

MAC operations
Det/Seg
Key

Figure 4: Disk space and MAC operations of pruned models with
ResNet18 backbone for the various tasks on the COCO dataset.

that both the dense and sparse models make similar mis-
takes.

D. Sparse subnetworks converge faster

The LTH paper [2] claimed that sparse subnetworks ob-
tained by pruning, often converge faster than their dense
counterparts. In this section we verify the claims of the pa-
per on object recognition tasks and found them to hold true.
We plot the validation loss during training for the dense un-
pruned model, and the sparse subnetwork obtained by keep-
ing only 20% of the weights of dense model. Both the mod-
els achieve a similar mAP after convergence. Fig. 6 shows
the task loss against the number of epochs during training.
The comparisons confirm that the sparse subnetwork initial-
ized from the winning ticket weights converge much faster.
This observation is consistent for heterogeneous tasks, e.g.,
object detection, instance segmentation, and keypoint esti-
mation.

E. Disk space and compute operations

Finally, we analyze the disk space and MAC operations
of pruned models in Figure 4. We store the index and val-
ues of only the non zero weights, when above a threshold
sparsity, while we store the full weight values for denser
sparsity levels. As expected, we observe significant reduc-

tions in disk space for higher levels of sparsity. However,
number of operations decreases at a much slower rate. This
can possibly be improved further with dedicated hardware
for sparse operations.

References
[1] Daniel Bolya, Sean Foley, James Hays, and Judy Hoffman.

Tide: A general toolbox for identifying object detection er-
rors. In ECCV, 2020.

[2] J Frankle and M Carbin. The lottery ticket hypothesis: Find-
ing sparse, trainable neural networks. In ICLR, 2019.

[3] R Mehta. Sparse transfer learning via winning lottery tickets.
In NeurIPS, 2020.

[4] Matteo Ruggero Ronchi and Pietro Perona. Benchmarking
and error diagnosis in multi-instance pose estimation. In
ICCV, 2017.

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec
is
io
n

oksThrs:[0.5], areaRng:[all], maxDets:[20]

w/o FN : 1.00
w/o Bkg. FP: .970
Opt. Score : .968
w/o Jit. : .912
w/o Inv. : .912
w/o Swap : .900
w/o Miss : .893
Orig. Dts. : .826

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec
is
io
n

oksThrs:[0.5], areaRng:[all], maxDets:[20]

w/o FN : 1.00
w/o Bkg. FP: .970
Opt. Score : .969
w/o Jit. : .910
w/o Inv. : .910
w/o Swap : .901
w/o Miss : .897
Orig. Dts. : .830

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec
is
io
n

oksThrs:[0.5], areaRng:[all], maxDets:[20]

w/o FN : 1.00
w/o Bkg. FP: .970
Opt. Score : .968
w/o Jit. : .912
w/o Inv. : .912
w/o Swap : .900
w/o Miss : .893
Orig. Dts. : .826

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec
is
io
n

oksThrs:[0.5], areaRng:[all], maxDets:[20]

w/o FN : 1.00
w/o Bkg. FP: .970
Opt. Score : .969
w/o Jit. : .910
w/o Inv. : .910
w/o Swap : .901
w/o Miss : .897
Orig. Dts. : .830

(a)Unpruned model (b) Pruned model

Figure 5: Error analysis of unpruned vs. pruned on kyepoint estimation. The error types of unpruned and pruned models are quite similar while the unpruned
one has slightly better performance

Lo
ss

Iterations (k) Iterations (k)

Lo
ss

Iterations (k)

Lo
ss

(a) Object detection (b) Instance segmentation (c) Keypoint estimation

Figure 6: Training curves of dense model vs. sparse model

