
Weakly Supervised Learning of Rigid 3D Scene Flow — Supplementary Material

Zan Gojcic1,2 Or Litany 2,3 Andreas Wieser1 Leonidas J. Guibas2 Tolga Birdal2

1ETH Zurich 2Stanford University 3NVIDIA

3dsceneflow.github.io

This supplementary material provides additional details,
discussion, and results that were omitted from the main pa-
per due to the lack of space. We give a detailed description
of the network architecture and the optimization scheme in
§ 1.1 and § 1.3, explain the datasets and their generation in
Sec. 2, and include additional ablation studies, as well as
quantitative and qualitative results in Sec. 3

1. Implementation details
Here we provide the implementation details of our net-

work architecture, foreground clustering using DBSCAN,
and test-time optimization scheme. Additionally, we sum-
marize the Kabsch algorithm and the entropy regularized
optimal transport. For a general overview please refer to
the main paper.

1.1. Network architecture

Our whole network is built upon MinkowskiEngine [4],
an auto-differentiation library for sparse tensors. In all ex-
periments, we first randomly sample 8192 points from the
source and target point cloud, respectively. We then vox-
elize the original point clouds into sparse tensors with a
voxel size of 0.1 m. If more than 8192 voxels remain, we
randomly select 8192 of them. For the evaluation, all the
inferred quantities are transferred from the voxels to the
originally sampled points using Eq (11). The combined
network has 8,078,149 learnable parameters. Fig. 1 shows
the detailed architecture, where blue rectangles denote the
Minkowski convolutional and transpose convolutional lay-
ers, violet rectangles the ResBlocks, and orange rectangles
are ReLU activation functions.

Backbone network. The detailed architecture of the back-
bone network is depicted in Fig. 1 (a). We use absolute co-
ordinates instead of the more common binary occupancy as
the input feature of the first layer. All convolutional layers
are followed by instance normalization and in ResBlocks
additionally by the ReLU activation function. The output of
the backbone network are 64-dimensional pointwise latent
features. Due to the fixed voxel size, the number of points
can vary between the point clouds.

Scene flow head. The scene flow head, depicted in Fig. 1

(b), takes the initial flow vector field Vinit as input and com-
putes a residual flow ∆Vinit. All layers except the last are
followed by the ReLU activation function. Normalization
functions are not used in the scene flow head.

Background segmentation head. The background seg-
mentation head (Fig. 1 (c)) comprises two sparse convolu-
tional layers, where the first one is followed by the instance
normalization and ReLU activation function. The output of
the second layer is passed through a sigmoid function to
obtain the foreground probabilities h.

1.2. Foreground clustering

We cluster the foreground points into objects using a
simple DBSCAN clustering algorithm. Specifically, we first
extract the foreground points Xf of the source point cloud
using the inferred foreground probabilities hX. We then
run a scikit-learn [15] implementation of DBSCAN with
eps = 0.75 m and the minimum number of samples in the
neighborhood equal to 5. After clustering, we only retain
clusters with at least 10 points. Our clustering algorithm
is based on the hypothesis that the objects scattered in the
scene, are separated by void space. If two objects (e.g. cars)
are too close to each other and get assigned to the same clus-
ter, our method does not have the capacity to recover from
this wrong assignment. However, we conduct an ablation
study (§ 3.2) and empirically confirm the above-mentioned
hypothesis for the autonomous driving datasets.

1.3. Test-time optimization

The object-level abstraction of the scene enables us to
perform test-time optimization of per-object rigid body
transformations. This optimization is performed indepen-
dently for the background and each of the foreground ob-
jects. In the following we assume that our network outputs
object-level masks {z}Kk=1 and transformation parameters
{Tk}Kk=1.

Background transformation. Let z1 and T1 denote the
inferred background mask and ego-motion transformation
parameters, respectively. We use z1 to extract the back-
ground points Xb and Yb of the source and target point
cloud, transform Xb with the inferred ego-motion T1 and

1

3dsceneflow.github.io

Figure 1: Network architecture of the backbone network (a), scene flow head (b), and background segmentation head (c).
Blue blocks denote the convolutional (3DConv) and transpose convolutational (3DConvTr) layers, where 3DConv,a,b,c,d
denotes a 3D convolutional layer with the kernel size a, stride b, output feature dimension c, and normalization function d.
Orange rectangle denotes the ReLU activation function [14] and IN is the instance normalization.

use these point clouds as an input to the ICP [2] optimiza-
tion of the transformation parameters. Specifically, we use
the Open3D [22] implementation with the maximum corre-
spondence distance of 0.15 m and a maximum number of
iterations equal to 300. On lidarKITTI the optimization of
the background transformation parameters takes 0.06 s on
average for a point cloud pair, using the same computer as
in the run time experiments in § 4.6 of the main paper.

Object level transformations. For the object level trans-
formations, we follow a similar procedure. We start by ex-
tracting the points Xk of the object k in the source point
cloud using the object mask zk, and all the foreground
points Yf of the target point cloud using the complemen-
tary mask of the background mask z1. We then transform
the points Xk with the inferred transformation parameters
Tk and again use the point clouds as input to the ICP op-
timization of the transformation parameters. We use all the
foreground points of the target point cloud as we do not have
access to the instance level correspondences. The optimiza-
tion of all foreground transformation parameters for a sin-
gle lidarKITTI point cloud pair takes approximately 0.02 s
on average. We perform at most 300 iterations of ICP per
object with a maximum correspondences distance equal to
0.25 m.

1.4. Kabsch algorithm

In order to make the paper self contained, we now sum-
marize the weighted Kabsch algorithm, which represents
the closed-form differentiable solution to the ego-motion
estimation problem:

R?
ego, t

?
ego = argmin

Rego,tego

Nb∑
l=1

wl‖Regox
b
l+tego−φ(xbl ,Y

b)‖2.

In the following, we omit the superscript b and define ql :=
φ(xl,Y) and the resulting point cloud of correspondences

as Q ∈ R3×N = {ql ∈ R3}l. Let x and q:

x :=

∑N
l=1 wlxl∑N
l=1 wl

, q :=

∑N
l=1 wlql∑N
l=1 wl

(1)

denote the weighted centroids of point clouds X and Q,
respectively. The centered point coordinates can then be
computed as x̃l := xl − x and q̃l := ql − q. By arranging
them back to the matrix form X̃ ∈ RN×3 and Q̃ ∈ RN×3,
a weighted covariance matrix S ∈ R3×3 can be computed
as

S = X̃TWQ̃ (2)

where W = diag(w1, . . . , wN). Considering the singular
value decomposition S = UΣVT , the optimal rotation ma-
trix is given by

R?
ego = V

1 0 0
0 1 0
0 0 det(VUT)

UT (3)

where det(·) denotes computing the determinant and is used
to avoid generating a reflection matrix. Finally, the optimal
translation vector is recovered as

t?ego = q−R?
egox. (4)

Note, when estimating the per-object transformation param-
eters of the foreground points, we use an unweighted Kab-
sch algorithm, i.e. W = I.

1.5. Entropy-regularized optimal transport

We provide a brief overview of the Sinkhorn algorithm
used to approximate the optimal transport following [3].
Consider a discrete probability measure µ on the simplex
Σd , {x ∈ Rn+ : x>1n = 1} with weights a = {ai} and
locations {xi}, i = 1 . . . n as:

µ =
∑n

i=1
aiδxi , ai ≥ 0 ∧

∑n

i=1
ai = 1 (5)

where δx is a Dirac delta function at x.

For two probability measures µ and ν in the simplex, let
U(µ,ν) denote the polyhedral set of nµ × nν matrices:

U(µ,ν) = {P ∈ Rnµ×nν

+ : P1nν = µ ∧ P>1nµ = ν}

where 1d is a d-dimensional vector of ones. U(µ,ν) is also
referred to as the transportation polytope.

Let C be a nµ × nν cost matrix that is constructed from
the ground cost function c(xµi , x

ν
j). Kantorovich’s optimal

transport formulation seeks to find the transport plan opti-
mally mapping µ to ν:

Wc(µ,ν) = dc(µ,ν) = minP∈U(µ,ν)〈P,C〉 (6)

with 〈·〉 denoting the Frobenius dot-product. Note that this
expression is also known as the Wasserstein distance (WD).
Due to the computational difficulties in minimizing Eq (6)
Cuturi [5] introduced an alternative convex set consisting of
joint probabilities with small enough mutual information:

Uα(µ,ν) = {P ∈ U(µ,ν) : KL(P ‖ µν>) ≤ α} (7)

where KL(·) refers to the Kullback Leibler divergence [8].
This restricted polytope leads to a tractable distance be-
tween discrete probability measures under the cost matrix
C constructed from the function c:

dc,α(µ,ν) = minP∈Uα(µ,ν)〈P,C〉. (8)

dc,α can be computed by a modification of simple matrix
scaling algorithms, such as Sinkhorn’s algorithm [17, 18].
Note that here the cost matrix is inversely related to the
affinity matrix defined in the main paper.

2. Datasets
In this work, a total of five datasets are used to train and

evaluate the performance of the proposed approach. In the
following, we detail the generation of the training and eval-
uation data. For all datasets, we use the same coordinate
system centered at the camera or LiDAR sensor. The z-
axis of the coordinate system points in the viewing direction
of the camera or to the front of the car, the positive y-axis
points in the up direction, and x completes the right-handed
coordinate system. All processed point clouds are available
under https://3dsceneflow.github.io/.

FlyingThings3D [11]. FlyingThings3D is a large-scale
synthetic dataset of stereo RGB images proposed to train
2D based scene flow networks. We follow [7] and use the
subset of the dataset in which the extremely hard examples
are omitted. The point clouds are obtained by lifting the
stereo images to 3D using the annotated disparity maps,
optical flow, and camera parameters. We again follow [7]
and remove the points whose disparity and optical flow are
occluded (occlusion maps are part of the original dataset).

Dataset Method Supervision EPE3D [m] ↓ Acc3DS ↑ Acc3DR ↑ Outliers ↓

stereoKITTI

(w/o ground)

HPLFlowNet [7] Full 0.117 0.478 0.778 0.410
PointPWC-Net [20] Full 0.069 0.728 0.888 0.265
FLOT [16] Full 0.056 0.755 0.908 0.242
Ours (backbone) Full 0.042 0.849 0.959 0.208
Ours Weak 0.163 0.541 0.658 0.452
Ours++ Weak 0.134 0.709 0.800 0.311

stereoKITTI

(with ground)

HPLFlowNet [7] Full 0.238 0.194 0.429 0.787
PointPWC-Net [20] Full 0.204 0.292 0.556 0.645
FLOT [16] Full 0.122 0.480 0.691 0.401
Ours (backbone) Full 0.143 0.392 0.660 0.533
Ours Weak 0.136 0.470 0.712 0.420
Ours++ Weak 0.068 0.836 0.897 0.263

Table 1: Evaluation results on stereoKITTI dataset. Weakly
supervised models are trained on semanticKITTI LiDAR
point clouds and evaluated directly on stereo point clouds of
stereoKITTI. Ours and Ours++ denote the output of the net-
work before and after test-time optimization, respectively.

Additionally, points with a depth larger than 35 m are re-
moved [7]. The resulting point clouds are in direct corre-
spondence, i.e. Y = X+V, where X and Y are the source
and target point cloud, and V is the ground truth flow. For
training and evaluation, 8192 points are randomly sampled
from each point cloud independently.

stereoKITTI [12, 13]. This is a dataset based on the KITTI
Scene Flow benchmark, which is designed for the evalua-
tion of stereo based scene flow methods. It consists of 200
training and 200 test scenes. Because the ground truth an-
notations of the test scenes are not available, only the train-
ing scenes are used for evaluation. Due to incomplete and
noisy annotations, 58 scenes are further removed and the fi-
nal evaluation set comprises 142 scenes [9, 7]. The stereo
images are lifted to point clouds analogously to FlyingTh-
ings3D [7]. Again, occluded points and points with a depth
larger than 35 m are removed. For evaluation, we sample
8192 points from each point cloud independently. Tab. 1
of the main paper shows the result of the typical evaluation
protocol in which the ground points are removed by a naive
thresholding the y coordinate at −1.4 m [9, 7] (the cameras
in the KITTI setup are mounted at ≈ 1.65 m height above
ground). In Tab. 1 we additionally report the results without
removing the ground points.

lidarKITTI [12, 13]. This dataset comprises the Velo-
dyne 64-beam LiDAR point clouds corresponding to the
same 142 scenes used in stereoKITTI. The ground truth
scene flow vectors are obtained by projecting the points of
the source point cloud to the image plane using the pro-
vided calibration parameters, and associating them with the
scene flow vectors of the corresponding pixels from the
stereoKITTI dataset [10]. Due to directly using the LiDAR
point clouds the points of both frames are not in direct corre-
spondence and exhibit the typical LiDAR sampling pattern
with very uneven point density.

semanticKITTI [1]. This dataset provides pointwise se-

https://3dsceneflow.github.io/

scene flow BG - segmentation ego motion
Dataset Method Supervision mean EPE3D [m] ↓ med. EPE3D [m] ↓ med. F-EPE3D [m] ↓ med. B-EPE3D [m] ↓ prec. FG ↑ rec. FG ↑ prec. BG ↑ recall. BG ↑ RRE [◦] ↓ RTE [m] ↓

lidarKITTI
(w/o ground)

Ours Weak 0.150 0.111 0.227 0.104 0.726 0.885 0.978 0.940 0.379 0.130
Ours+ Weak 0.110 0.064 0.227 0.049 0.726 0.885 0.978 0.940 0.126 0.053

Ours++ Weak 0.094 0.051 0.164 0.049 0.726 0.885 0.978 0.940 0.126 0.053

lidarKITTI
(with ground)

Ours Weak 0.133 0.109 0.186 0.109 0.734 0.855 0.991 0.980 0.327 0.130
Ours+ Weak 0.106 0.083 0.186 0.083 0.734 0.855 0.991 0.980 0.142 0.091

Ours++ Weak 0.103 0.083 0.131 0.083 0.734 0.855 0.991 0.980 0.142 0.091

Table 2: Detailed results of out weakly supervised method on lidarKITTI dataset. Ours denotes the direct output of the
network. Ours+ and Ours++ are the results with only background and full test-time optimization, respectively

mantic labels annotated in 3D and improved ego-motion in-
formation for all sequences of the KITTI odometry bench-
mark [6]. Different to stereoKITTI and lidarKITTI, which
include only the points that map to the image plane of
the front camera, semanticKITTI contains full 360◦ LiDAR
sweeps. We therefore process semanticKITTI point clouds
to make them consistent with lidarKITTI. Specifically, we
first convert the 3D coordinates of the points to polar co-
ordinates and consider only the points with an azimuth
angle in the range [−45◦, 45◦] and elevation angle in the
range [−24.9◦, 12.0◦]. This maintains the points that would
roughly map to the image plane of the front camera. We
then additionally remove the points that are less than 1.5 m
or more than 35 m away from the LiDAR sensor. The binary
background mask is generated by combining the semantic
labels into the background (class labels from 40 to 249) and
foreground (other class labels)1. We split the point cloud
pairs of semanticKITTI into 4350 validation (sequences 03
and 05) and 18840 training samples (remaining nine se-
quences of the training set). Because BG-FG labels of the
test dataset are not available, we perform all evaluations on
the validation dataset.

waymo open [19]. This is a large scale dataset collected
by a fleet of waymo self-driving cars in various conditions.
It contains 1950 sequences of 20 s duration each, collected
with an acquisition rate of 10 Hz. In our experiments we use
the training batches 0–16 (≈ 50% of the training data) for
fine-tuning (§ 3.2) and the validation batches 0–2 (≈ 40%
of the validation data) for evaluating our approach2. Waymo
cars are equipped with five LiDAR sensors altogether, one
mid-range LiDAR on the top and four short range ones on
the sides of the car. In our experiments, we only use the
points acquired by the top, mid-range scanner. We then
transform these points into a cordinate system centered at
the location of the LiDAR sensor in the KITTI setup and
follow the processing steps used in semanticKITTI dataset
to extract only the points that would roughly project to
the front camera. Along with the ego-motion information,
waymo-open also provides the 3D bounding-boxes of ve-
hicles, pedestrians, cyclists, and signs. We use the former

1https://github.com/PRBonn/semantic-kitti-api/
blob/master/config/semantic-kitti-all.yaml

2https://waymo.com/open/download/

Dataset Method Initialization EPE3D [m] ↓ Acc3DS ↑ Acc3DR ↑ Outliers ↓

lidarKITTI
(w/o ground)

Ours Pretrained 0.102 0.706 0.833 0.357
Ours++ Pretrained 0.080 0.834 0.912 0.279

Ours Random 0.150 0.521 0.744 0.450
Ours++ Random 0.094 0.784 0.885 0.314

lidarKITTI
(with ground)

Ours Pretrained 0.091 0.601 0.788 0.445
Ours++ Pretrained 0.080 0.742 0.850 0.369

Ours Random 0.133 0.460 0.746 0.527
Ours++ Random 0.103 0.686 0.819 0.410

Table 3: Evaluation of our model trained with random ini-
tialization of the weights (Random) and with the weights
pretrained on FT3D (Pretrained), on lidarKITTI dataset.
Ours and Ours++ denote the direct output of the network
and the result after test-time optimization, respectively.

three classes to extract the foreground and consider the re-
maining points as background.

3. Evaluation details and additional results
We start this section by providing additional details and

results (§ 3.1) supporting the evaluations presented in Sec. 4
of the main paper, before reporting additional evaluations
(§ 3.2) that were omitted from the main paper due to the
space constraint.

3.1. Evaluation details

Additional results on stereoKITTI. In § 4.3 of the main
paper, we evaluate the performance of our backbone un-
der full supervision on FlyingThings3D and stereoKITTI.
Tab. 1 supplements that section with the evaluation results
on the stereoKITTI dataset without removing the ground
points. Additionally, we report the generalization results of
our weakly supervised model trained on the LiDAR point
clouds of semanticKITTI.

As expected, the performance of all fully supervised
methods drops significantly if the challenging ground points
are not removed. Remarkably, our weakly supervised
model generalizes from LiDAR to stereo point clouds, and
when combined with the test-time optimization even out-
performs all methods on stereoKITTI with ground points.
Tab. 1 also hints that the generalization LiDAR 7→ stereo is
less challenging than the opposite stereo 7→ LiDAR.

Additional results on lidarKITTI. Tab. 2 supplements
Tab. 2 from the main paper and provides detailed results of

https://github.com/PRBonn/semantic-kitti-api/blob/master/config/semantic-kitti-all.yaml
https://github.com/PRBonn/semantic-kitti-api/blob/master/config/semantic-kitti-all.yaml
https://waymo.com/open/download/

BG segmentation ego-motion
Method Initialization prec. FG ↑ rec. FG ↑ prec. BG ↑ recall. BG ↑ RRE [◦] ↓ RTE [m] ↓

semanticKITTI (w/o ground)
Ours Pretrained 0.950 0.892 0.991 0.996 0.145 0.035

Ours++ Pretrained 0.950 0.892 0.991 0.996 0.127 0.031
Ours Random 0.971 0.895 0.991 0.998 0.201 0.047

Ours++ Random 0.971 0.895 0.991 0.998 0.133 0.032
semanticKITTI (with ground)

Ours Pretrained 0.942 0.909 0.996 0.998 0.177 0.044
Ours++ Pretrained 0.942 0.909 0.996 0.998 0.116 0.029

Ours Random 0.966 0.904 0.996 0.999 0.249 0.059
Ours++ Random 0.966 0.904 0.996 0.999 0.121 0.032

Table 4: Evaluation of our model trained with random ini-
tialization of the weights (Random) and with the weights
pretrained on FT3D (Pretrained), on semanticKITTI dataset.
Ours and Ours++ denote the direct output of the network
and the result after test-time optimization, respectively.

our method on the lidarKITTI dataset. Note, how the test-
time optimization improves background (Ours+) as well as
foreground (Ours++) scene flow estimates. The results of
the BG-segmentation and FG/BG scene flow split should be
interpreted with caution, due to the noisy annotation of the
lidarKITTI dataset (see below). Further qualitative results
are shown in Fig. 2 and failure cases in Fig. 3

Noisy annotations of lidarKITTI. During the evalua-
tion, we have discovered that lidarKITTI annotations are
noisy and contain outliers. These GT errors occur especially
around the points lying on or close to the object boundaries.
Outliers are caused by the projection of the 3D point onto
the 2D image plane, where two distant points in 3D can
map to the same pixel, as there is no perception of depth.
Fig. 4 shows two prominent examples: in some cases, the
instance mask and motion of one object are also assigned
to the other (top), and in other cases, the background points
get assigned the instance label and scene flow of the object
in the front (bottom). Because of training on semanticKITTI
with accurate annotations, our method is still capable of pre-
dicting the correct object masks (Fig. 4 (b)). Wrong anno-
tation however result in a lower BG-segmentation perfor-
mance and cause apparent errors in our scene flow predic-
tion (see Fig. 4 (c)). Unfortunately, this error is reflected in
the quantitative evaluations not only for our method but also
for many other scene flow algorithms out there. To reduce
this effect, we additionally report median EPE3D values in
Tab. 2, as well as the FG and BG EPE3D based on our pre-
dicted BG-mask, instead of the noisy GT mask.

3.2. Additional evaluations and ablation studies

Pretraining vs training from scratch. Evaluations re-
ported in § 4.4 to § 4.6 of the main paper are performed us-
ing the weakly supervised model trained on semanticKITTI
from scratch. However, recent works show that general 3D
backbone networks can benefit from pretraining on large
(annotated) datasets [21].

To evaluate this in our setting, we consider a model

BG segmentation ego-motion
Method Mode prec. FG ↑ rec. FG ↑ prec. BG ↑ recall. BG ↑ RRE [◦] ↓ RTE [m] ↓

Ours++ generalization 0.960 0.689 0.957 0.996 0.141 0.099
Ours++ fine-tuned 0.945 0.921 0.989 0.992 0.111 0.078

Table 5: Comparison of the model fine-tuned on waymo
open with the model trained only on semantiKITTI (gen-
eralization), on the waymo open dataset. Fine-tuned model
outperforms the directly generalized one in terms of FG pre-
cision and ego-motion error.

GT inst. mask lidarKITTI (with ground)
train test EPE [m] ↓ F-EPE [m] ↓ B-EPE [m] ↓ RRE [◦] ↓ RTE [m] ↓
3 0.097 0.216 0.085 0.146 0.082

3 0.101 0.183 0.094 0.139 0.091
3 3 0.097 0.265 0.085 0.146 0.082

0.102 0.195 0.094 0.139 0.091

Table 6: Performance evaluation of our simple foreground
clustering algorithm compared to models using GT instance
mask during training and/or testing on lidarKITTI dataset.

whose backbone weights were initialized with weights
trained (with full supervision) on FlyingThings3D rather
than randomly. The evaluations on lidarKITTI (Tab. 3) and
semanticKITTI (Tab. 4) show that, in line with the literature,
our backbone network can indeed benefit from pretraining.
The improvement in is especially prominent in scene flow
estimation (more than 1 cm lower EPE3D in Tab. 3) and in
ego-motion estimation (lower rotation and translation errors
in Tab. 4). In order to fully adhere to the weakly supervised
setting, we use the randomly initialized model in all other
evaluations.

Fine-tuning on waymo open. In the main paper, waymo
open dataset is used only to evaluate the direct generaliza-
tion performance of our model trained on semanticKITTI.
However, as briefly discussed in the main paper, waymo
open also provides all the annotations that our weakly su-
pervised model relies on. We now use these annotations,
to evaluate the gain obtained by fine-tuning our model. To
this end, we initialize our model with the weights trained on
semanticKITTI and fine-tune it for 22k iterations (less than
2 epochs) on waymo open. Tab. 5 shows that the fine-tuned
model greatly outperforms the model trained only on se-
manticKITTI, especially in terms of foreground recall (gain
of more than 20 percent points) and relative translation er-
ror (improvement of 2 cm). The relative improvement is
qualitatively also depicted in Fig. 5

Training and testing with GT instance masks. To define
the FG instance-level rigidity loss and to perform the test-
time optimization of the foreground, we rely on a simple un-
supervised clustering of the foreground into individual ob-
jects. Arguably, this part could be replaced by a more pow-
erful instance segmentation head, which would however re-
quire instance annotations during training. It is of interest to

lidarKITTI (with ground)
EPE [m] ↓ RRE [◦] ↓ RTE [m] ↓

w/o Sinkhorn 0.594 0.539 0.615
with Sinkhorn 0.133 0.327 0.130

Table 7: Ablation study of the Sinkhorn algorithm on li-
darKITTI dataset (evaluation protocol follows Tab. 3 in the
main paper).

see how much benefit a perfect clustering would bring to our
method. We therefore ablate by replacing the output of our
clustering with the GT instance labels, which are provided
both in semanticKITTI and lidarKITTI. We assess the indi-
vidual contributions from having GT labels during training,
testing or both. Tab. 6 shows that our model with the sim-
ple clustering algorithm performs comparably to the models
using GT instance masks during training (semanticKITTI)
and/or testing (lidarKITTI). We conclude that our cluster-
ing algorithm, which does not require GT instance masks
during training or testing, is the preferred option. Due to
the noisy instance annotations of the lidarKITTI dataset,
the performance of models using GT instance masks dur-
ing testing should be interpreted with caution.

Sinkhorn algorithm. The benefit of using the entropy-
regularized Sinkhorn algorithm for the ego-motion estima-
tion is two fold: (i) the Sinkhorn distances should yield
more accurate correspondences due to the optimally of the
transport map, and (ii) in combination with the slack row
and column it enables us to down-weight the outliers in a
principled manner. We empirically confirm these benefits in
an ablation study in which we directly use the affinity ma-
trix M to compute the soft correspondences φ(xbi ,Y

b) =
Ybmi/||mi||1 and estimate the ego-motion with an un-
weighted Kabsch algorithm (§ 1.4).

Tab. 7 depicts a significant increase of the EPE when
Sinkhorn is deactivated. This increase can be accredited to
the inferior estimation of the ego-motion parameters, which
reults in a much higher RTE and RRE.

References
[1] J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke,

C. Stachniss, and J. Gall. SemanticKITTI: A Dataset for Se-
mantic Scene Understanding of LiDAR Sequences. In IEEE
International Conf. on Computer Vision, 2019. 3

[2] Paul J Besl and Neil D McKay. Method for registration of
3-d shapes. In Sensor fusion IV: control paradigms and data
structures, volume 1611, pages 586–606. International Soci-
ety for Optics and Photonics, 1992. 2

[3] Tolga Birdal, Michael Arbel, Umut Simsekli, and Leonidas J
Guibas. Synchronizing probability measures on rotations via
optimal transport. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
1569–1579, 2020. 2

[4] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d
spatio-temporal convnets: Minkowski convolutional neural

networks. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2019. 1

[5] Marco Cuturi. Sinkhorn distances: Lightspeed computation
of optimal transport. In Advances in neural information pro-
cessing systems, pages 2292–2300, 2013. 3

[6] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for autonomous driving? the kitti vision benchmark
suite. In Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2012. 4

[7] Xiuye Gu, Yijie Wang, Chongruo Wu, Yong Jae Lee, and
Panqu Wang. Hplflownet: Hierarchical permutohedral lat-
tice flownet for scene flow estimation on large-scale point
clouds. In IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 3254–3263, 2019. 3

[8] Solomon Kullback and Richard A Leibler. On informa-
tion and sufficiency. The annals of mathematical statistics,
22(1):79–86, 1951. 3

[9] Xingyu Liu, Charles R Qi, and Leonidas J Guibas.
Flownet3d: Learning scene flow in 3d point clouds. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 529–537, 2019. 3

[10] Xingyu Liu, Mengyuan Yan, and Jeannette Bohg. Meteor-
net: Deep learning on dynamic 3d point cloud sequences. In
IEEE International Conference on Computer Vision, pages
9246–9255, 2019. 3

[11] N. Mayer, E. Ilg, P. Häusser, P. Fischer, D. Cremers, A.
Dosovitskiy, and T. Brox. A large dataset to train con-
volutional networks for disparity, optical flow, and scene
flow estimation. In IEEE International Conference on
Computer Vision and Pattern Recognition (CVPR), 2016.
arXiv:1512.02134. 3

[12] Moritz Menze, Christian Heipke, and Andreas Geiger. Joint
3d estimation of vehicles and scene flow. ISPRS Annals
of Photogrammetry, Remote Sensing & Spatial Information
Sciences, 2, 2015. 3

[13] Moritz Menze, Christian Heipke, and Andreas Geiger. Ob-
ject scene flow. ISPRS Journal of Photogrammetry and Re-
mote Sensing, 140:60–76, 2018. 3

[14] Vinod Nair and Geoffrey E Hinton. Rectified linear units
improve restricted boltzmann machines. In ICML, 2010. 2

[15] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B.
Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M.
Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011. 1

[16] Gilles Puy, Alexandre Boulch, and Renaud Marlet. FLOT:
Scene Flow on Point Clouds Guided by Optimal Transport.
In European Conference on Computer Vision, 2020. 3

[17] Richard Sinkhorn. A relationship between arbitrary positive
matrices and doubly stochastic matrices. The annals of math-
ematical statistics, 35(2):876–879, 1964. 3

[18] Richard Sinkhorn. Diagonal equivalence to matrices with
prescribed row and column sums. The American Mathemat-
ical Monthly, 74(4):402–405, 1967. 3

[19] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien
Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou,

Yuning Chai, Benjamin Caine, et al. Scalability in perception
for autonomous driving: An open dataset benchmark. arXiv
preprint arXiv:1912.04838, 2019. 4

[20] Wenxuan Wu, Zhiyuan Wang, Zhuwen Li, Wei Liu, and Li
Fuxin. Pointpwc-net: A coarse-to-fine network for super-
vised and self-supervised scene flow estimation on 3d point
clouds. arXiv preprint arXiv:1911.12408, 2019. 3

[21] Saining Xie, Jiatao Gu, Demi Guo, Charles R Qi, Leonidas J
Guibas, and Or Litany. Pointcontrast: Unsupervised pre-
training for 3d point cloud understanding. arXiv preprint
arXiv:2007.10985, 2020. 5

[22] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3D: A
modern library for 3D data processing. arXiv:1801.09847,
2018. 2

Figure 2: Successful cases of our method on the lidarKITTI dataset. By correctly splitting the scene into foreground and
background (d), our method estimates the accurate scene flow vectors (b), which align the two frames (c).

Figure 3: Failure cases of our method on the lidarKITTI dataset. Top: even though the car’s object mask (d) is correctly
predicted, its predicted scene flow vectors yield large end-point-errors (b). Bottom: a pillar in the middle of the scene is
wrongly predicted as foreground object (d), hence its scene flow does not agree with the background and GT (b).

Figure 4: lidarKITTI annotations are obtained by projecting 3D points onto the image plane, which results in wrong instance
(a) and scene flow (c) annotations for points with azimuth and elevation angles close to the object boundaries (e.g. green car
is partially blue in (a) top). On the other hand, our method infers correct object masks (b) and scene flow (d), yet due to the
wrong GT annotations, the scene flow appears to be erroneous.

Figure 5: Fine-tuning on waymo open improves performance and robustifies our model. Top: objects close to the sensor are
not common in semanticKITTI and hence cannot be detected correctly by the generalized model (c). Bottom: a challenging
example with 18 foreground objects (much larger than average number in semanticKITTI). Note, how more object masks are
correctly inferred by our fine-tuned model compared to direct generalization (c-column).

Figure 6: Failure cases on waymo open dataset. Top: our model is unable to estimate accurate ego-motion and scene flow
(b) if the background points consists only of the ground points after foreground removal (c). Bottom: rare objects such as
trucks (top right corner in c and d) appear ambiguous to our model and cause prediction of the wrong masks (c).

