Appendix

In this appendix we provide additional experiments (Ap-
pendix A), experimental details (Appendix B) and theoreti-
cal results (Appendix C).

A. Additional Experiments
A.1. Forgetting an entire class

In the main paper we considered forgetting a random
subset of 10% of the training data. Here we consider instead
the problem of completely forgetting all samples of a given
class in a single forgetting request. In Figures 6 and 7, we
observe that also in this setting our proposed method out-
performs other methods and is robust to different readout
functions. Note that for the case of removing an entire class
the target forget error (i.e. the error on the class to forget) is
100%.
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Figure 6. Readout function plot similar to Figure 3 for Caltech-
256 dataset, where we forget an entire class rather a sequence of
randomly sampled data subsets.
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Figure 7. Readout function plot similar to Figure 3 for FGVC-
Aicrafts dataset, where we forget an entire class rather a sequence
of randomly sampled data subsets.

A.2. Role of L»-Regularization

We plot the amount of remaining information and the test
error as a function of the Lo regularization coefficient. Note
that instead of incorporating weight decay directly in the
optimization step, as it is often done, we explicitly add the
L, regularization to the loss function. As expected theoret-
ically (Theorem 3), increasing the regularization coefficient

makes the training optimization problem more strongly con-
vex, which in turn makes forgetting easy. However, increas-
ing weight decay too much also hurts the accuracy of the
model. Hence there is a trade-off between the amount of re-
maining information and the amount of regularization with
respect to the regularization. We plot the trade-off in Fig-
ure 8.
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Figure 8. Plot of the amount of remaining information and test
error vs the Lo regularization coefficient. We forget 10% of the
training data sequentiall through 10 forgetting request.

A.3. More experiments using SGD for forgetting

We repeat the same experiments as in Figure 3 on the fol-
lowing datasets: Stanford Dogs, MIT-67, CIFAR-10, CUB-
200, FGVC Aircrafts. Overall, we observe consistent results
over all datasets.
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Figure 9. Same experiments as Figure 3 for StanfordDogs.
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Figure 10. Same experiments as Figure 3 for MIT-67.



Retain Error Forget Error Test Error Retrain Time

10 10 10 _
5
— — _ S40
= = S a
g g bl &
§° 5° 5 ° 20
2 2 £ 3
& & I & 2
0 > o > 0 > A > 0 > A > " 0 > 'S >
> & & & & 8 & &
& & & & & & & & & & & &
o & B & & & & o«
o Retain Set o Forget Set @ Test Set Membership Attack
So.2 So2 $o2 100
5 5 s =
s g g g
a o o >
20.1 20.1 201 2 50
S S s ' 5
2 2 2 K]
3 3 ] g
> > > <
Soo Soo oo 0
< > < s < > < S < > < > > £ >
& & & & & & & & & &
B & €& & €& ® ¢

Figure 11. Same experiments as Figure 3 for CIFAR-10.
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Figure 12. Same experiments as Figure 3 for CUB-200.
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Figure 13. Same experiments as Figure 3 for FGVC-Aircrafts.
A.4. Information vs Noise/Epochs

Information/Test Error vs Noise

. StanfordDogs CUB-200
@ 100
< 10¢ L 80 =
s 75 103 <
=103 t60 S
5 10 50 =
2 102 407
§ 102 25 e
€ 20
10~ 1072 10~ 1072
Noise Std Noise Std
Information/Test Error vs Epochs

StanfordDogs CUB-200
E 40
<§( 260 \ 20 120 \ 30 g
= . 100 20‘%
3 240 5
E 80 10 &
S =
£ o 60 0

1 2 3 4 5 6 1 2 3 4 5 6

Epochs Epochs

Figure 14. Same experiment as Figure 2 for Stanforddogs and
CUB-200 datasets.
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Figure 15. Same experiment as Figure 2 for MIT67.

B. Experimental Details

We use a ResNet-50 pre-trained on ImageNet. For the
plots in Figure 1, we train ML-Forgetting model using SGD
for 50 epochs with batch size 64, learning rate 1r=0.05,
momentum=0.9, weight decay=0.00001 where the learning
rate is annealed by 0.1 at 25 and 40 epochs. We explic-
itly add the L, regularization to the loss function instead of
incorporating it in the SGD update equation. We only lin-
earize the final layers of ResNet-50 and scale the one-hot
vectors by 5 while using the MSE loss. For fine-grained
datasets, FGVC-Aircrafts and CUB-200, in addition to the
ImageNet pre-training, we also pre-train them using ran-
domly sampled 30% of the training data (which we assume
is part of the core set).

For the training the ML-Forgetting model in the read-
out functions and information plots using SGD, we use the
same experimental setting as above with a increased weight
decay=0.0005 for Caltech-256,StanfordDogs and CIFAR-
10 and 0.001 for MIT-67,CUB-200 and FGVC-Aircrafts.
We use a higher value of weight decay to increase the strong
convexity constant of the training loss function, which facil-
itates forgetting (see Lemma 4).

For forgetting using ML-Forgetting model in the read-
out function/information plots using SGD (ML-Forgetting
to minimize eq. (11)), we use momentum=0.999 and de-
crease the learning rate by 0.5 per epoch. We run SGD
for 3 epochs with an initial Ir=0.01 for Caltech-256, Stan-
fordDogs and CIFAR-10 and run it for 4 epochs with initial
Ir=0.025 for MIT-67, CUB-200 and FGVC-Aircrafts.



C. Theoretical Results

Lemma 1. Let x,y be two random vectors such that E|x||?, E||y||? > 0. Then we have the following, for any o > 0:

1
Elx +y[I* < (1 + )Elx|* + (1 + —)E]ly||*

Proof.
Ellx+y|* = E(x|* + ly]* + 2(x,¥))
< E([Ix]* + [y l1* +2/(x, ¥)])

(a)

< IE(IIXIF + Iy l” + 2v/[Ix[2v ||y|2)
2 2 2 ||}’H2

=E{ [x[" + lyllI” + 2/lIx|*ay/ ==

(0) 1
< B+ Iyl + I+ 17

1
= L+ E[x|* + (1+ —)E[y|? (16)
for any o > 0, where (a) follows from the Cauchy-Schwarz inequality and (b) follows from the AM-GM inequality. [J

Lemma 2. Let C = {w|w € Rland|w| < R < oo} and {(w) : R? — RT be a strongly convex function with
Mmaxyecl(w) < 0o, G £ maxwec||VUW)| < 00 and w* = argming, cgal(W) such that |w*|| < oo. Then Vw1, ws € C,
we have that |[((w1) — l(w2)| < G||w1 — Wal||. When £(w) is also quadratic with 8 = \yx(V2€(W)), the maximum eigen
value of the Hessian, we have that G = B(R + |[w*||).

Proof. Let g(t) = {(wit +wa(1 —1)), where ¢ € [0, 1] then from Mean Value Theorem (MVT) we have that g(1) — g(0) =
g (c) for some c in between 0 and 1. This implies that g(1) = £(wy), g(0) = €(w2) and g (¢) = (Vl(wit + wa(1 —
t)), w1 — wz). Thus from MVT we get:

|€(W1) - g(W2)| = |<V€(W1t + WQ(]. - t)),Wl - W2>|
9wt + wall — )] wr — wa

(b)
< (maxweol|VEW)[D[[wr — wal a7

where (a) follows from the Cauchy-Schwarz inequality and (b) follows from the fact that wit+wo(1—t) € C andVw € C,
[VE(w)|| < maxwec | VE(W)].

1
When ¢(w) is quadratic, then we can always write {(w) = i(w —w)TQ(w — w*) + ¢, where Q = V2/(w) is a

constant symmetric matrix and co = ¢(w*). From our definition of £(w) we can write:
maxwec||VE(W)|| = maxweo||Q(w — wh)
(a) .
< maxwecfB|lw — w’|

(b)
< B(maxweellwll + [[w*[])
< BRA+ (W)

where (a) follows from the definition of /3 and (b) follows from the triangle inequality. Substituting this result in Equation (17)
we get:

[6(w1) = L(w2)| < B(R+ [w*[[)[lw1 — wa]|



1
Lemma 3. Consider a function Lp(w) = Ez&(w) + gHw
€D

2, where {;(w) : RY — R*, £,(0) < M and D is a dataset

2M
of size n. Let W}, = argmin,, cga Lp(W), then ||wh|| < (/—.
W

Proof.

(a) (b) (¢)
Elwhll? < Lo(wp) < Lp(0) < M

[2M
Thus, |[wh|| </ ——, where (a) follows from the assumption that ¢;(w) is non-negative, (b) follows from the fact that

w7, is the minimizer of Lp(w) and (c¢) follows from the assumption that £;(0) < M. Note that the result is independent
of n, thus, the empirical risk minimizers of the datasets obtained by removing a subset of samples will also lie within a

[2M
d—dimensional sphere of radius /| —.
1

1 e~ .
Lemma 4. Consider a function Lp(w) = fz&(w), where (;(w) = £;(w) + gHw
n
i€D
convex function with £;(0) < M < co. Let D, (retain set) be the dataset remaining after removing b samples D (forget
set) from D i.e. D, = D — Dy. Let wy, = argmingcpaLp(W) and Wi, £ argmingegaLp, (W). Let C = {wlw €
R and |w| < \/2M/u} and G = maxyec||VE(W)|| < co. Then we have that:

O

2, t;(w) : RY — R* is strongly

whH—wh || < —
I —wh, | < 2

When £;(w) is also quadratic with 8 = max;cpp (V2;(W)), the smoothness constant of Lp(w), we have that G =
26+/2M/ .

Proof. We use the same technique as proposed in [35].

(@ n—10 . b .
< " Lp, (wp) + ELDf (Wp,)

= Lp(wp) + —Lp,(wp,) — —Lp,(wp)
(18)
where, (a) first inequality follows from the fact that w, is the minimizer of Lp,_ (w).

2M
From Lemma 3 we know that ||wpl|,[[wp, |, [[wp,[| < 4/——. Also from the definition of 3 we have that
. ; V

[2M
A (V2Lp,(w)) < 3. Then applying Lemma 2 with R = |/ — for Lp, (w) we get that
1

|, (Wp) = Lp, (Wp, )| < Gllwp — wp | (19)

From the the definition of Lp, (w) we know that it is a jz—strongly convex function. So we have the following property:

2 (20)

* * u * *
Lp,(wp,) = Lp,(wp) + §||WD — Wp,

Substituting Equation (19) and Equation (20) in Equation (18) we get:



When /¢;(w) is also quadratic with 5 = maxiep)\Max(VQlZ-(w)), the smoothness constant, then from Lemma 2 we have

G =B(R+[wpll) < B(2y/2M/p).

4bBv2M

* *
||WD - WDT” < nNS/Q

O

Lemma 5. Let {(w) : R? — R* be a convex and 3— smooth with minimizer, w* = argmin,cgal(w). Then we have that:
* 6 * (|2
1 t(w) — 0(w*) < 5w = w|
2. [VEw)II? < 2(6(w) — £(w™))

Proof. From the definition of 3—smoothness we have that:

Lwy) < b(wa) + <V€(wz),w1 — W2> + g”wl - W2H2 2D

Setting wi; = w, wy = w™ and using the fact that V/(w*) = 0, we get that:
g ‘e *) < 5 * (|2
(w) —l(w?) < Slw — w7
For (2) we minimize Equation (21) with respect to w:
. . B 2
ming,, cgal(Wi) < ming,, cgd (E(WQ) + <V€(wz),wl - W2> + §Hw1 — wal| )

= (w3) + ming, cga ((Vl(w2), w1 — wa) + gle — ws||?)

a 14 2
9 gy - 17 o
(23)

Vé(wz)

where (a) follows from the result that w; = wo —

= argming, cpa (<V€(W2),W1 — W2> + g”wl - W2||2)-

Setting wo = W, miny,, cga = ¢(w*) in Equation (23) and re-arranging the terms we get (2). O

1
Theorem 2. (SGD) Consider Lp(w) = EZ&- (w), where l;(w) : R — RY is f—smooth and ju— strongly convex.

i€D
Let w* = argming,cpa Lp(W) and w; = argming,cpal;(w). Then we have the following result after t steps of SGD with
batch-size B and constant learning rate n = j/3%:

w
2

B

202

Ellw, - w2 < (1- B

t
) liwo — w12 +

IR o IS i
where oy = gg&(w ) — g;&(wi)

Proof. We do not use the bounded gradient assumption for the convergence of SGD and instead use the smoothness of our
loss function [4]. This is because the training loss in our case is a quadratic function whose gradient is linear and not bounded.



Consider a mini-batch SGD update,

B
1
=W — ~—E A\
Wil =W =1 5 1i£1(wt)

Jj=1

where the examples {ig}gl, iﬁ)l, e zg_]ﬂ} are sampled uniformly at random with replacement for all the iterations ¢.

Then by expanding ||w;.1 — w*||?,

B
1 2
Wi = w* = [[we =5 53" Ve (wi) - w
j=1

B B
1 1 2
=2 w1 35 ) - 3

Now taking expectation over the randomness of sampling we get that,

B
* * * 1
Blwess ' Bl w22 SV ()
2

(T)

(24)

1 2
I
o

(T2)

We will lower bound (77) and upper bound (75). Let & = {igl), i?), - ~i§B) }. Then for (T}) we have,

E

<Wt —w"n- ;ZB: Vglgi)l (Wt)>] = K¢, ...¢, |}E€t+1 [<Wt AR ;ZB: vgzﬁ)l (Wt)> ’51 T ft:”
j=1 j=1
=Ee¢,..¢, l<wt -whn- % iEiwlvéii{gl (Wt)>:|‘|
j=1

1 B
= E[<wt —w*n- 5 ZVLD(W:&)>1

- l<wt —w, nVLD(Wt)>

O —Tr 25
> pn - Ellwy —w| (25)

where (a) follows from the strong convexity of Lp. Note that if ;(w) is p—strongly convex then even Lp is p—strongly
convex.

Using the same conditioning argument as before and the fact that each sample in a batch is sampled i.i.d. for (7%) we get
that:



E|ln- ;i Ve wo|| = (FEIVEe (wl?) + 22 IV Lo(w) )
j=1

< <2§(ELwt —726 ) B(BB_I)(]ELD(WO—:LXR:&(W*))>

i=1

— 2 %(ELD(Wt —fZK %Z&(W*)—%Z&(WZ‘))
i=1 i=1

=1

() n
2 (2 (S LS w) et

i=1
260% (1 ¢ 1 «
2 2 12 4 *
<o B Elw, - w? + (gg —n;mm)
o
2 52 (12 2681%a,
=n"-p - Elwe — w¥| 5 (26)
where (a) follows from applying Lemma 5 (1) to £, i@ (w) and Lp(wy) and (b) follows from applying Lemma 5 (2).
Now substituting Equation (25) and Equation (26) 1n Equation (24), we get that,
w* 28n%o
Ellwer — w2 < (1= 2np+ 7287 Eljw; — w2 + =L @7)
Minimizing the coefficient with respect to 7 we get n* = 32 , which gives the following update equation:
Ellwis - w2 < (1— 2 )Blw, — w2 + 22" 28)
t+1 = 32 t— B
Now applying this update recursively we get:
Ellw, —we? < (1- 55) Elwo - wll? + 2%
lw; —w @ wo — w¥| B
O
Definition 1. (Forgetting: Single Request) Consider an ERM problem with Lp(w Zé , where {; = (; (w) +

lED
%HW”Q, l;(w) : RT — R* is a quadratic convex function and D is a dataset of size n. Let wp = A7 (Lp(w)) be the

weights obtained after 7 steps of algorithm .A (SGD in our case) on Lp(w). Then given a request to forget a set Dy C D
we apply the following scrubbing procedure:



S(WD,D,Df) é Wp — AWD7Df + z (29)

where Awp p, = AT(ip,Df (w)), 7 is the number of steps of .A to minimize Lp, (w) (where D, = D — Dy). Here

Lp,(w) =0.5-wl Hp w —wlgp (wp) (30)

z ~ N(0,01) and Hp, is the hessian on the remaining data (D,). We compute the residual gradient, gp,(Wp) =
V Lp, (wp) once over entire D,., while w! Hp_(wp)w is compute stochastically in A.

Definition 2. (Forgetting: Multiple Requests) Consider that we are provided with a sequence of forgetting request (D}) Let
D; C D be the dataset remaining, wp, (or simply w;) be the weights obtained after j forgetting requests. Then given the

j + 1™ request to forget D;H C Dy, from Equation (29) in Definition 1 we have that:
Wj+1 é S(WJ,D],D}'Fl) = W_] — AWDJ_’D?JA —|— VA (31)

where z ~ N (0,01) and wy = wp are the weights obtained after training on the entire data D.

2, &(W) : Rd —

Theorem 3. (Formal) Consider an empirical risk, Lp(w) = %ZE (W), where l;(w) = {;(w) + gHW

i€D
R is quadratic convex function with symmetric V20(w), 8 = max;ep A (V2E;(w)) is the smoothness constant of Lp(w),
£;(0) < M < oo and D is a dataset of size n. Let A be SGD with mini-batch size B, oy > 0 be some constant associated with
SGD, v = 1— u? /3%, 7 be the number of steps of A performed while forgetting and a € (0,1/y™ —1). From Definition 2, let
Wj_1, Dj_1 be the scrubbed weights and the dataset remaining after j — 1 removal requests, then given a forgetting request
to remove D; (|D§c| = b) we obtain the following bound on the amount of information remaining in the weights after using
the scrubbing procedure in Definition 2:

2
8bB8v2M 8

I(U)_,D% S(w;_1,D;_1,D%)) <
(Upz1 D5, S(wj—1,Dj1, f))— 1—(+an

Proof. We follow similar proof technique to [35]. Consider a dataset D of size n and a forgetting sequence Drorger = (D}) j
(batches of data of size b that we want to forget). Let w;, W;, W, D; be the scrubbed weights with noise, scrubbed weights
without noise, weights obtained by re-training from scratch using SGD and the remaining dataset after j requests of forgetting.

Let n; be the size of D; and w; = argminy, g Lp, (w). Then from Definition 2 we have that

W =W+ 2 (32)

w;- =W,_1 — AWDJ717D§ (33)

where z ~ N(0,0%1), AWDFl,D;f‘ = AT(E/D%]_D; (w)), A, is 7 steps of SGD and EDjil_DJf (w) =
M ZieDj_l—Dj; wlV2l;(wp)w — <VLD_7~_1—D; (wp),w). Note that w; are weights obtained at the end of

training with SGD while w is the true empirical risk minimizer of Lp, (w).
After re-training from scratch on D, for 7; steps using SGD with mini-batch size of B, we have the following relation for

7 > 0, using Theorem 2:

200

E|w; — wj|[* <27 |[Winie — wi||* + B

(34)
where v = 1 — p2/B? and Wiy, = 0 is the training initialization, W are the weights obtained by training on Dy = D,
which is the complete dataset before receiving any forgetting request. When training the linearized model the user weights
are initialized to 0 since they correspond to the first order perturbation of the non-linear weights.



2log (n;p/4b3)

log1/v
(b samples) of data during forgetting. Substituting 7; in Equation (34) we get:

n .
Letus select T; > 7 + , where n; > 3 Here 7 is the number of steps of SGD used to remove one batch

é% (35)

Bl - wil? <77 (50
J

200 @ . (8bﬂ\/2M>2 | 200

2
~ * (12
) ([ Winie — w3~ + B3 =" B3

np3/?
. 2M
where () follows from [[Wiyie — W} || <4/ ——and 1/n; <2/n.
u

Now we will compute a similar bound for the weights obtained by applying the forgetting procedure. For any j > 1, using
the scrubbing procedure in Definition 2 we have the following relation:

. 8bB3V2M \ 2 20
VV/- —_ VV*T 2 <
Ellw, il =< 1—(1+a) (36)

for 0 < a < 1/47 — 1. Note that w; are the weights after applying the newton update but before adding the scrubbing noise.

From the scrubbing procedure described in eq. (32) and eq. (33) to solve for AwDy_l.Dj; we minimize IA/Dj_l_D}' using

SGD. While the optimal value of Aw%jihp}, =W,_1 —W}‘, thus, AW'Dj—ly'D'; 7AW*D]-,1,D‘} = AW/Dj—h'Dj; —-W;_1 +W;7 —
Wi — w;.. We can bound ]E||AWDJ717,D_}‘ - Ang_l,D-;; [|* using Theorem 2 and thus also bound E|[|w* — w;- Il
More precisely we have:
2 (a) ’ 2
]E||AWDj,I,D; - AW*D]'—MD';H = Ellw; — wj|
/ (b) 20
o * 2 < T (0) _ * ) 2 J
Ellw; —wi[* < v EHAWDFID? AWDj,l,D§H + B3
! * () * 20’[
Elw; —wjl* = vEllw;- - wjl + 52 (37)

where the (a) follows from the definition of the scrubbing update as shown above, (b) follows from Theorem 2 and (c) follows
from Aw%) ) Dy = 0. Note that both while training (7} iterations) and forgetting (7 iterations) we use SGD with a constant
j—1> j

step-size. We will use eq. (37) along with induction to prove eq. (39). For z ~ A/(0,0%I), we have:

E|z|* = do? (38)



To prove eq. (39) we use induction. Lets consider the base case j = 1.
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where (1) follows from eq. (37), (2) follows from the Definition 2, (3) follows from Lemma 1, (4) follows from Lemma 4
and eq. (38), (5) follows from eq. (35). Note that in the base case wy = W( which are the weights obtained by training on
the complete data. For Lemma 4, D; and D;_; differ in b samples and n; > n/2. Also note that the expectation above is
with respect to the randomness of SGD.

Now that we have the base case, for any general j > 1 we get:
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where (1) follows from eq. (37), (2) follows from the eq. (32), (3) follows from Lemma 1, (4) follows from induction update,
Lemma 4 and eq. (38). For Lemma 4, D; and D;_; differ in b samples. The expectation above is with respect to the
randomness of SGD and the scrubbing noise z.

Thus we have:
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Combining eq. (35) and eq. (39) using Lemma 1 we get:
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where (1) follows from Lemma 1.
Thus, we get:
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Since the problem is quadratic, the hessian will be same at all points. From Proposition 1 in [16], we have:
I(U‘]]CZIDI;, S(Wj_l, Dj—h D})) S E [(W; — VAVj)T(O'2I)_1(W; — VAV])]
- Ellw] — il
< )
Note that the expectation in the previous expression is with respect to the randomness in the training algorithm and the
forgetting algorithm, plus the set D’}'. Then using eq. (40) with the previous equation we obtain that:
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k=1%f> j—1,5-1, f >~ 1_(1_’_0[)77_



