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In this supplementary, we provide additional information
for,

S1 implementation details of our MOCDA model,

S2 more detailed information about the datasets in our ex-
periments,

S3 additional experimental quantitative results and quali-
tative results on the OCDA benchmark,

S4 additional visualization results for the style code and
hypernetwork prediction.

S1. Detailed Implementation of our MOCDA
model

In the main paper, we introduce our MOCDA model in
the Sec. 3 and the implementation details in the Sec. 4.1.
Here we provide more detailed implementation of different
modules in our MOCDA model, separately.

Cluster. In the cluster module, we train the MUNIT [5]
model to translate between the source domain images and
the compound target domain images in the unsupervised
way. We follow the experimental set up in the urban scene
image translation set up in MUNIT [5]. The shortest side
of the images are firstly resized to 512, and then the images
are randomly cropped with the size of 400× 400. The loss
weights for image reconstruction loss, style reconstruction
loss, content reconstruction loss, and domain-invariant per-
ceptual loss are set as 10, 1, 1, and 1, respectively. The
Adam optimizer [7] is adopted with β1 = 0.5, β2 = 0.999,
and the learning rate is set as 0.0001. Also, the dimension
of the style code is set as 8. The number of the clusters K
is set as 4.

Split, Fuse, and Update. In the split and fuse mod-
ule, we have the semantic segmentation network and the
discriminator. We adopt the DeepLab-VGG16 [2, 13] with

synchronized batch normalization layer [6] for the seman-
tic segmentation network. And we adopt the discrimina-
tor structure in [14]. The compound target domain im-
ages and the open domain images, from BDD100K [16],
Cityscapes[3], WildDash [17] and KITTI [1], are resized to
1024×512, and the source domain images from GTA5 [12]
and SYNTHIA-SF [4] are resized to 1280 × 720. The λ1
in Eq. (7), and λ2 in Eq. (14) of the main paper are set
as 0.001. In the update module, during the training stage,
the δ in Eq. (17) is set as 0.0001. In the split, fuse and up-
date module, we adopt the SGD optimizer to train the hy-
pernetwork and the semantic segmentation network, where
the momentum is 0.9 and the weight decay is 5 × 10−4.
The learning rate is set as 2.5 × 10−4, and uses the poly-
nomial decay strategy with power of 0.9 as done in [14].
We keep the same learning rate for online updating the hy-
pernetwork and the semantic segmentation network. Also,
we adopt the Adam optimizer [7] for training the discrim-
inator with β1 = 0.9, β2 = 0.99. The learning rate is set
as 1.0× 10−4 and uses the polynomial decay strategy with
power of 0.9. And our MOCDA model is implemented with
PyTorch [11].

S2. Datasets Overview

In Sec. 4 of the main paper, we introduce the exper-
iments setup of the OCDA benchmark, and there are six
datasets in total, GTA5 [12], SYNTHIA-SF [4], BDD100K
[16], Cityscapes [3], WildDash [17] and KITTI [1], in-
volved in the experiments. Here we provide detailed in-
formation of involved datasets.

GTA5. GTA5 [12] is a synthetic urban scene image
dataset, rendered from game engine. The scene of the GTA5
images is based on the city of Los Angeles. The GTA5
dataset covers 24966 densely labeled images, the annotation
of which is compatible with that of Cityscapes. In OCDA
benchmark, GTA5 → BDD100K, the GTA5 images, with
the ground truth label, serve as source domain.



SYNTHIA-SF. SYNTHIA-SF [4] is a synthetically ren-
dered image dataset from virtual city. There are 2224 im-
ages in the SYNTHIA-SF dataset, featuring different sce-
narios and traffic conditions. The images are densely la-
beled and the labels are compatible with Cityscapes. In
our OCDA benchmark, SYNTHIA-SF → BDD100K, the
SYNTHIA-SF dataset and the associated ground truth label
serve as the source domain.

BDD100K. BDD100K [16] is a real urban scene image
dataset, mainly taken from US cities. And the images in
BDD100K dataset are diverse in different aspects such as
weather and environment. We adopt the C-driving subset
of BDD100K proposed in [8], which is composed of rainy,
snowy, cloudy and overcast images. During training stage,
14697 images, without the ground truth label, are used as
the unlabeled compound target domain, including rainy,
snowy and cloudy weather images. All different weather
images are mixed and not assigned the weather informa-
tion. During the testing stage, 803 images covering rainy,
snowy and cloudy weather, with ground truth semantic an-
notation, are used as the validation set of the compound tar-
get domain, for evaluating the adaptation performance of
the model. Besides, during the testing stage, 627 images
with the ground truth semantic label, containing overcast
weather, are taken as the validation set of the open domain,
for evaluating the generalization performance of the model.
The semantic label of the BDD100K dataset is compatible
with that of Cityscapes.

Cityscapes. Cityscapes [3] is a real street scene image
dataset, collected from different European cities. In our
OCDA benchmark, during the testing stage, the validation
set of Cityscapes, covering 500 densely labeled images, is
used as one of the extended open domains to evaluate the
generalization ability of the model.

KITTI. KITTI [1] covers the real urban scene images,
taken from the mid-size European city, Karlsruhe. In our
OCDA benchmark, the validation set of KITTI, including
200 densely labeled images, is used as one of the extended
open domains for generalization ability evaluation during
the testing stage. The ground truth label of KITTI dataset is
compatible with that of Cityscapes.

WildDash. WildDash [17] is a dataset covering images
from diverse driving scenarios under the real-world condi-
tions. The images in WildDash possess the diversity in dif-
ferent aspects, such as the time, weather, data sources and
camera characteristics. In our OCDA benchmark, during
the testing stage, the validation set of WildDash, containing
70 Cityscapes annotation compatible images, serves as one
of the extended open domains for measuring the generaliza-
tion performance of the model.

S3. Additional Experimental Results

In Sec. 4 of the main paper, we provide the quantitative
and qualitative experimental results of our MOCDA model
on the OCDA benchmark. Here we provide the detailed
quantitative experimental results, and additional qualitative
experimental results.

Quantitative results. In Table 1 and Table 4 of the main
paper, the quantitative experimental results of our MOCDA
model are reported on the mean IoU, for the OCDA task.
Correspondingly, in Table S1 and Table S2, the more de-
tailed per-class IoU results, on the compound target domain
and the open domain, are shown. Additionally, the quanti-
tative experimental results on different weather images are
reported in Table S3. The detailed quantitative experimen-
tal results further verify the effectiveness of our MOCDA
model for the OCDA task, on both of the compound target
domain and the open domain.

Qualitative results. In Fig. 4 of the main paper, we
show the qualitative experimental results of our MOCDA
model for the OCDA task, on the compound target do-
main, the open domain and the extended open domains.
In Fig. S1, we show more qualitative comparison between
our MOCDA model and other methods, on the compound
target domain (rainy, snowy and cloudy images), and the
open domain (overcast images). It further proves the va-
lidity of our MOCDA model for the OCDA task, on both
of the compound target domain and the open domain. In
Fig. S2, we provide additional qualitative comparison be-
tween our MOCDA model with or without online update,
on the extended open domains. As shown in Fig. S2, the
online update introduces obvious benefit for improving the
generalization of the MOCDA model to the extended open
domains.

Online Update v.s. Transductive Learning. The on-
line update during testing stage is different from the tra-
ditional transductive learning setting. In transductive set-
ting, the testing set is provided as unlabeled training data
during the training phase, while our online update performs
one gradient step after predicting a mini-batch of the open
domain and extended open domain samples during testing
stage. Such update is performed in an unsupervised manner.
The ability of online update during testing stage is the ad-
vantage of MAML on fast adaptation. For fair comparison,
on the benchmark GTA → BDD100K, we also conducted
an experiment by using online update for the AdaptSeg-
Net [14] during the testing phase (i.e., performing one gra-
dient step adversarial training), and the results are 16.0%,
21.1% and 16.4% on three extended open domains, which
is much lower than the AdaptSegNet performance without
online update, 22.0%, 23.4% and 17.5%.
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mIoU

Target

Source∗ 32.1 12.4 47.1 3.9 22.6 17.6 9.9 4.7 52.0 13.9 74.6 24.3 0.0 38.0 10.0 10.4 0.0 0.0 19.7
AdaptSegNet∗[14] 46.9 14.0 60.2 5.9 20.4 18.3 9.0 4.6 48.9 14.1 78.2 24.6 0.0 48.7 13.1 16.5 0.0 0.0 22.3

Ours(Split) 71.6 13.4 63.7 8.2 19.9 18.2 6.8 5.6 57.3 16.5 80.9 22.7 0.0 57.4 18.7 21.2 0.0 0.0 25.4
Ours (Fuse) 73.9 20.6 58.2 8.5 22.8 17.9 10.4 7.1 61.9 20.1 84.8 26.1 2.3 61.3 19.8 26.4 0.0 3.7 27.7

Open†
Source∗ 28.7 20.3 50.3 6.3 25.1 20.6 8.7 12.3 62.0 20.3 79.4 33.4 4.6 38.8 10.4 7.0 0.0 0.3 22.5

AdaptSegNet∗[14] 58.7 22.9 64.1 10.4 24.0 21.8 8.1 10.8 62.8 22.4 84.9 35.5 8.8 53.2 15.5 10.1 0.5 0.5 27.1
Ours (Split) 76.5 22.0 68.6 15.8 22.6 21.6 6.0 6.8 64.8 24.3 86.6 35.2 8.1 63.1 26.1 11.7 0.1 0.0 29.5
Ours (Fuse) 80.1 28.6 66.0 13.0 26.6 20.9 8.9 15.5 67.0 25.1 87.7 33.2 9.5 69.2 23.0 18.3 2.2 2.0 31.4

Table S1: Per-Class IoU on the compound target domain and open domain of the OCDA benchmark: GTA5→ BDD100K. ∗
represents our reproduced result of the experiments in [8]. The results are reported over 19 classes. The ’bicycle’ class is not
listed due to the result is close to zero. The best results are denoted in bold. Open † is open domain covering the BDD100K
overcast images.
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Target

Source 3.1 6.8 42.7 0.0 0.0 10.2 1.1 39.6 69.2 9.7 28.2 19.2
MinEnt[15] 67.2 1.8 50.7 0.0 0.0 4.4 1.3 11.7 71.8 8.7 45.7 23.9

AdaptSegNet[14] 63.1 11.9 46.5 0.1 0.0 10.5 3.1 22.2 78.7 17.8 54.1 28.0
Ours(Split) 59.8 15.5 52.8 0.2 0.0 13.6 2.3 28.4 73.3 19.2 55.1 29.1
Ours (Fuse) 61.3 17.3 49.7 1.0 0.1 11.1 5.9 37.5 72.6 21.5 56.3 30.4

Open†

Source 1.9 9.0 43.4 0.0 0.0 11.1 1.2 45.1 74.7 13.0 27.2 20.6
MinEnt[15] 68.9 2.5 51.6 0.0 0.0 5.7 1.4 14.2 77.2 11.7 49.3 25.7

AdaptSegNet[14] 69.4 14.4 48.7 0.0 0.0 11.8 2.3 23.0 82.4 21.7 59.0 30.3
Ours (Split) 65.3 22.4 54.6 0.2 0.0 15.1 2.0 29.3 78.7 24.0 57.8 31.8
Ours (Fuse) 65.5 24.7 50.0 1.0 0.2 12.0 5.3 36.7 76.2 26.6 60.7 32.6

Table S2: Per-Class IoU on the compound target domain and open domain of the OCDA benchmark: SYNTHIA-SF →
BDD100K. The results are reported over 11 classes. The best results are denoted in bold. Open † is open domain covering
the BDD100K overcast images.

S4. Additional Visualization

Hypernetwork prediction. In Sec. 4.2 of the main pa-
per, we use the ablation study and the variants of our model
to prove the validity of the hypernetwork in our MOCDA
model. Here we provide additional t-SNE [9] visualiza-
tion of our hypernetwork prediction. As shown in Fig. S3,
for the image samples from different sub-target domains,
our hypernetwork prediction possesses different feature at-
tributes, even though we do not explicitly provide the sub-
target domain information in this process. It proves that
our hypernetwork is able to adaptively adjust the prediction,
conditioned on the style code of the image samples.

Style code. In Sec. 4 of the main paper, besides the
open domain from BDD100K dataset adopted by [8], we
introduce the extended open domains, which have much
larger domain gap to the compound target domain than the
open domain from BDD100K dataset, to further measure
the generalization ability of the model trained for OCDA
task. Here we provide the style code t-SNE [9] visual-

ization of the compound target domain, the open domain
and the extended open domains. As shown in Fig. S4,
it can be observed that the domain gap between the open
domain and the compound target domain from BDD100K
dataset is narrow due to the similar style. Instead, our in-
troduced extended open domains, Cityscapes, KITTI and
WildDash dataset, have much larger domain gap from the
compound target domain. And the style code extracted by
our MOCDA model can effectively reflect the domain gap.
It demonstrates the effectiveness of the style code extracted
in our MOCDA model, and proves the rationality of our in-
troduced extended open domains for further evaluating the
generalization performance of the model to the unseen do-
mains.
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Figure S1: Qualitative semantic segmentation results of the OCDA benchmark: GTA→ BDD100K. The snowy, rainy and
cloudy images are from the compound target domain, while the overcast image is from the open domain. It can be observed
that our MOCDA model outperforms the source-only baseline and the AdaptSegNet method on both of the compound target
domain and the open domain.
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Figure S2: Qualitative semantic segmentation results on the extended open domains of the OCDA benchmark: GTA→
BDD100K. It is observed that the online update shows obvious benefit for the generalization to the extended open domains.



Figure S3: t-SNE visualization of hypernetwork prediction. For image samples belonging to different sub-target domains
1, 2, 3, 4, our hypernetwork prediction shows different attributes even though we do not explicitly input the sub-target domain
information during the fuse module training, which proves the validity of our hypernetwork.

Figure S4: Extended open domains, open domain and target domain style code t-SNE visualization. The domain gap between
the BDD100K open domain image and the target domain image (red and green points) is narrow due to the similar style.
Our introduced extended open domain Cityscapes, KITTI and WildDash images have much larger domain gap from the
BDD100K images. And the style code extracted by our cluster module can effectively reflect the domain gap.


