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Abstract

This supplementary material consists of five parts. In
Sec 1, we study the impact of supervisions at different scales
on the segmentation performance. We visualize the inter-
mediate RFCC prediction to show the intermediate feature
learning in Sec 2. Then, we compare the performance of
omni-supervision on decoder and encoder in Sec 3. Later,
we provide more visual results of ScanNet v2, S3DIS and
Semantic3D in Sec 4. Finally, Sec 5 lists the detailed ex-
perimental results of these three datasets shown in the main
paper.

1. Supervisions at Different Layers

Supervision Scales mIoU1 2 3 4 5

X X X X 76.3
X X X X 76.6
X X X X 76.9
X X X X 76.2

X X X X X 77.8
Table 1. Ablation study on significance of supervisions at different
scales.

We design an omni-scale supervision method for point
cloud segmentation via the proposed gradual Receptive
Field Component Reasoning in the main paper. All scales
are supervised in the decoding stage to learn informative
representation for semantic segmentation. In this section,
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Figure 1. Illustration of framework using deformable KPConv as
the backbone. In our method, all the five scales are supervised by
the target RFCCs.

we attempt to analyze the significance of supervisions at
different scales. In this ablation study, deformable KP-
Conv [19] is also taken as the backbone and performance is
evaluated on the Semantic3D reduced-8 task. In the archi-
tecture of deformable KPConv network, there are 5 differ-
ent scales as shown in Figure 1. So, we separately remove
the supervisions for l = 2, 3, 4, 5. It is noteworthy that we
always keep the supervision for the final layer (l = 1) be-
cause it directly guides the semantic label prediction, other-
wise the network will give random prediction. The results
is reported in Table 1. The results indicates supervision in
the center-most layer (l = 5) plays an important role in the
omni-scale supervision. That is because it can help the en-
coder to obtain representative global features which is quite
important for the following reasoning. Meanwhile, the su-
pervision before the final prediction l = 2 also contributes
a lot because it can directly provide semantic informative



features to the final segmentation.

2. Visualization of intermediate RFCC
We visualize the RFCC reasoning process and our pre-

dicted RFCCs in intermediate layers to implicitly show the
intermediate feature learning in Figure 2. Meanwhile, the
OA of RFCC prediction is 97.34% on the validation set of
ScanNet v2, demonstrating good representation learning of
intermediate features to some extent.
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Figure 2. Visualization of intermediate RFCCs whose element
color represents the probability of existence for each category.

3. Supervision on Decoder vs. Encoder

Method mIoU

KPConv deform 73.1

KPConv deform + [RFCR + FD][encoder] 76.8
KPConv deform + RFCR + FD 77.8

Table 2. More ablation study on the strategy of omni-scale super-
vision.

In our implementation, all the supervisions are added in
the decoder even the target RFCCs are generated according
to the receptive fields of features in the encoder. That is
because the features in the encoder can also be supervised
through the skip links. In order to show the advantage of
our strategy, we attempt to supervise the features in the en-
coder rather than the decoder according to the RFCCs, and
Feature Densification is also applied on the corresponding
features in the encoder. Compared with supervision in the
decoding stage, guiding the feature extraction using RFCCs
in the encoder is not able to effectively extract informative
representation from global and local features in the decod-
ing stage, such obtaining inferior result as reported in Ta-
ble 2.

4. Visualization Results
In this section, we present more visualization results of

our method on the three datasets described in the main pa-
per. We present more visualization results of our baseline
and our methods on the validation set of ScanNet v2 [1] in
Figure 3. In Figure 4, we provide additional visualization
results to show the qualitative improvement over the base-
line in S3DIS Area 5. We also visualize more scenes in the
validation set of Semantic3D in Figure 5.

Input Ground Truth KPConv deform
(Baseline) Ours

Figure 3. More visualization results on the validation dataset of
ScanNet v2. The images from the left to right are input point
clouds, semantic labels, predictions given by our baseline and our
method, respectively.

Input Ground Truth KPConv deform
(Baseline) Ours

Figure 4. More visualization results on the test dataset of the
S3DIS Area-5. The left-most images are inputs and the follow-
ing images are segmentation ground truth, predictions of baseline
and our method separately.

Input Ground Truth KPConv deform
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Figure 5. More visualization results on the validation dataset of
Semantic3D. Input point clouds, semantic labels, results of our
baseline and our method are presented respectively from left to
right.

5. Detailed Experimental Results
In this section, we provide more quantitative details

about our experimental results for better comparison with



Method mIoU bath. bed bksf. cab. chair ctr. curt. desk door floor oth. pic. ref. shw. sink sofa tab. toil. wall win.

PointNet++ (NIPS’17) [15] 33.9 58.4 47.8 45.8 25.6 36.0 25.0 24.7 27.8 26.1 67.7 18.3 11.7 21.2 14.5 36.4 34.6 23.2 54.8 52.3 25.2
PointCNN (NIPS’18) [12] 45.8 57.7 61.1 35.6 32.1 71.5 29.9 37.6 32.8 31.9 94.4 28.5 16.4 21.6 22.9 48.4 54.5 45.6 75.5 70.9 47.5
3DMV (ECCV’18) [2] 48.4 48.4 53.8 64.3 42.4 60.6 31.0 57.4 43.3 37.8 79.6 30.1 21.4 53.7 20.8 47.2 50.7 41.3 69.3 60.2 53.9
PointConv (CVPR’19) [23] 55.6 - - - - - - - - - - - - - - - - - - - -
TextureNet (CVPR’19) [5] 56.6 67.2 66.4 67.1 49.4 71.9 44.5 67.8 41.1 39.6 93.5 35.6 22.5 41.2 53.5 56.5 63.6 46.4 79.4 68.0 56.8
HPEIN (ICCV’19) [7] 61.8 72.9 66.8 64.7 59.7 76.6 41.4 68.0 52.0 52.5 94.6 43.2 21.5 49.3 59.9 63.8 61.7 57.0 89.7 80.6 60.5
SegGCN (CVPR’20) [10] 58.9 83.3 73.1 53.9 51.4 78.9 44.8 46.7 57.3 48.4 93.6 39.6 6.1 50.1 50.7 59.4 70.0 56.3 87.4 77.1 49.3
SPH3D-GCN (TPAMI’20) [11] 61.0 85.8 77.2 48.9 53.2 79.2 40.4 64.3 57.0 50.7 93.5 41.4 4.6 51.0 70.2 60.2 70.5 54.9 85.9 77.3 53.4
FusionAwareConv (CVPR’20) [28] 63.0 60.4 74.1 76.6 59.0 74.7 50.1 73.4 50.3 52.7 91.9 45.4 32.3 55.0 42.0 67.8 68.8 54.4 89.6 79.5 62.7
FPConv (CVPR’20) [13] 63.9 78.5 76.0 71.3 60.3 79.8 39.2 53.4 60.3 52.4 94.8 45.7 25.0 53.8 72.3 59.8 69.6 61.4 87.2 79.9 56.7
DCM-Net (CVPR’20) [16] 65.8 77.8 70.2 80.6 61.9 81.3 46.8 69.3 49.4 52.4 94.1 44.9 29.8 51.0 82.1 67.5 72.7 56.8 82.6 80.3 63.7
PointASNL (CVPR’20) [25] 66.6 70.3 78.1 75.1 65.5 83.0 47.1 76.9 47.4 53.7 95.1 47.5 27.9 63.5 69.8 67.5 75.1 55.3 81.6 80.6 70.3
FusionNet (ECCV’20) [27] 68.8 70.4 74.1 75.4 65.6 82.9 50.1 74.1 60.9 54.8 95.0 52.2 37.1 63.3 75.6 71.5 77.1 62.3 86.1 81.4 65.8

SceneEncoder (IJCAI’20) [24] 62.8 - - - - - - - - - - - - - - - - - - - -
SceneEncoder + Ours 65.9 69.1 72.4 69.6 63.2 81.5 47.7 75.4 64.6 50.9 95.2 42.8 28.4 56.6 76.1 62.6 71.1 61.0 88.9 79.3 61.0

KPConv deform (ICCV’19) [19] 68.4 84.7 75.8 78.4 64.7 81.4 47.3 77.2 60.5 59.4 93.5 45.0 18.1 58.7 80.5 69.0 78.5 61.4 88.2 81.9 63.2
KPConv deform + Ours 70.2 88.9 74.5 81.3 67.2 81.8 49.3 81.5 62.3 61.0 94.7 47.0 24.9 59.4 84.8 70.5 77.9 64.6 89.2 82.3 61.1

Table 3. Semantic segmentation results on ScanNet v2.

Method mIoU ceil. floor wall beam col. wind. door chair table book. sofa board clut.

PointNet (CVPR’17) [15] 41.09 88.80 97.33 69.80 0.05 3.92 46.26 10.76 58.93 52.61 5.85 40.28 26.38 33.22
RSNet (CVPR’18) [6] 51.93 93.34 98.36 79.18 0.00 15.75 45.37 50.10 65.52 67.87 22.45 52.45 41.02 43.64
PointCNN (NIPS’18) [12] 57.26 92.31 98.24 79.41 0.00 17.6 22.77 62.09 74.39 80.59 31.67 66.67 62.05 56.74
ASIS (CVPR’19) [22] 53.40 - - - - - - - - - - - - -
ELGS (NIPS’19) [21] 60.06 92.80 98.48 72.65 0.01 32.42 68.12 28.79 74.91 85.12 55.89 64.93 47.74 58.22
PAT (CVPR’19) [26] 60.07 93.04 98.51 72.28 1.00 41.52 85.05 38.22 57.66 83.64 48.12 67.00 61.28 33.64
SPH3D-GCN (TPAMI’20) [11] 59.5 93.3 97.1 81.1 0.0 33.2 45.8 43.8 79.7 86.9 33.2 71.5 54.1 53.7
PointASNL (CVPR’20) [25] 62.6 94.3 98.4 79.1 0.0 26.7 55.2 66.2 83.3 86.8 47.6 68.3 56.4 52.1
FPConv (CVPR’20) [13] 62.8 94.6 98.5 80.9 0.0 19.1 60.1 48.9 80.6 88.0 53.2 68.4 68.2 54.9
Point2Node (AAAI’20) [3] 62.96 93.88 98.26 83.30 0.00 35.65 55.31 58.78 79.51 84.67 44.07 71.13 58.72 55.17
SegGCN (CVPR’20) [10] 63.6 93.7 98.6 80.6 0.0 28.5 42.6 74.5 80.9 88.7 69.0 71.3 44.4 54.3
DCM-Net (CVPR’20) [16] 64.0 92.1 96.8 78.6 0.0 21.6 61.7 54.6 78.9 88.7 68.1 72.3 66.5 52.4
FusionNet (ECCV’20) [27] 67.2 - - - - - - - - - - - - -

RandLA (CVPR’20) [4] 62.42 91.19 95.66 80.11 0.00 25.24 62.27 47.36 75.78 83.17 60.82 70.82 65.15 53.95
RandLA+Ours 65.09 92.66 97.43 82.40 0.00 37.04 59.72 52.30 77.49 86.95 63.48 71.99 70.54 54.13

KPConv deform (ICCV’19) [19] 67.1 92.8 97.3 82.4 0.0 23.9 58.0 69.0 91.0 81.5 75.3 75.4 66.7 58.9
KPConv deform+Ours 68.73 94.18 98.33 84.34 0.00 28.45 62.36 71.17 91.95 82.60 76.13 71.14 71.60 61.25

Table 4. Results of indoor scene semantic segmentation on S3DIS Area-5.

Method mIoU man-made. natural. high veg. low veg. buildings hard scape scanning. cars

SegCloud (3DV’17) [17] 61.3 83.9 66.0 86.0 40.5 91.1 30.9 27.5 64.3
RF MSSF (3DV’18) [18] 62.7 87.6 80.3 81.8 36.4 92.2 24.1 42.6 56.6
SPG (CVPR’18) [9] 73.2 97.4 92.6 87.9 44.0 93.2 31.0 63.5 76.2
ShellNet (ICCV’19) [29] 69.4 96.3 90.4 83.9 41.0 94.2 34.7 43.9 70.2
GACNet (CVPR’19) [20] 70.8 86.4 77.7 88.5 60.6 94.2 37.3 43.5 77.8
FGCN (CVPR’20) [8] 62.4 90.3 65.2 86.2 38.7 90.1 31.6 28.8 68.2
PointGCR (WACV’20) [14] 69.5 93.8 80.0 64.4 66.4 93.2 39.2 34.3 85.3
RandLA (CVPR’20) [4] 77.4 95.6 91.4 86.6 51.5 95.7 51.5 69.8 76.8

KPConv rigid (ICCV’19) [19] 74.6 90.9 82.2 84.2 47.9 94.9 40.0 77.3 79.7
KPConv deform + Ours 77.6 97.0 90.9 86.7 50.8 94.5 37.3 79.7 84.1

KPConv deform (ICCV’19) [19] 73.1 - - - - - - - -
KPConv deform + Ours 77.8 94.2 89.1 85.7 54.4 95.0 43.8 76.2 83.7

Table 5. Semantic segmentation results on Semantic3D (reduced-8).

other competitors. In Table 3, we present the mean IoU
(mIoU) over categories and the IoUs for different classes
for ScanNet v2. We also list the category scores for S3DIS
Area-5 in Table 4. It’s noteworthy that all the methods do

not have good performance on the segmentation of beams
in Area 5 because there is a large difference between the
beams in Area 5 (test set) and those in Area 1, 2, 3, 4, and
6 (training set). Finally, Table 5 shows the IoUs of various



classes for Semantic3D reduced-8 task.
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