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1. Introduction
This supplementary material provides additional details

on our network architectures (on both single-view and
stereo-view input versions), the total loss functions, and
Neural Positional Encoding. We also present further re-
sults on the KITTI [4], CityScapes [2], and Make3D [13]
datasets. Additionally, we provide a video, “Video01”, to
show that our PLADE-Net can generate very sharp and con-
sistent depth estimates from single view inputs.

2. More Details on Network Architectures
For the sake of completeness and reproducibility, we

provide the detailed layer descriptions of our PLADE-Net
and PLADE-NetS networks in Tables 1 and 2, respectively.

2.1. Detailed PLADE-Net Architecture

Table 1 describes our PLADE-Net architecture. Other
than its input and output layers, our PLADE-Net adopts a
fairly simple auto-encoder backbone with residual blocks
and skip connections as shown in Table 1.

2.2. Detailed PLADE-NetS Architecture

Table 2 depicts our stereo input variant, the PLADE-
NetS. To incorporate right-view features, our PLADE-NetS
shares the left-view encoder filter weights to process the
right view input image. Then, left and right deep features
are combined by simple concatenation in the bottleneck, as
described in the Conv6 encoder layer in Table 2. The de-
coder side is the same as in our PLADE-Net, which means
that the multi-scale right-view features are simply ignored
in the decoder side, as described in Table 2.

3. More Details on Loss Functions
We provide more details on the total loss functions used

to train our PLADE-Net following the two-stage training
strategy in [8].

3.1. First Training Stage Total Loss

The total loss function (ls1) in the first stage of training
is a combination of l1 = ||I′R − IR||1, perceptual [11] (lp),
and disparity smoothness (lds) losses, as given by

ls1 = ||I′R − IR||1 + αplp + αdslds, (1)

where αp and αds are empirically set to 0.01 and 0.0004,
respectively, to balance their contributions. Each term is
described next.

Perceptual loss. Perceptual loss [11] (lp) enforces simi-
larity between the synthesized right-view image (I′R) and the
GT right-view (IR) in the deep feature space of a pre-trained
CNN. Perceptual loss has shown to be effective for image
reconstructions [11, 12, 7] as it penalizes the relationships
between the target pixel and the surrounding pixels instead
of measuring the error at the single-pixel location. These
relationships are given by the receptive fields and learned
filter parameters of the deep network layers. The receptive
fields grow in size as the CNN extracts deeper features. The
perceptual loss is then given by:

lp = αp

3∑
l=1

||φl(I′R)− φl(IR)||22, (2)

where φl(·) denotes the first 3 maxpool layers from the pre-
trained VGG19 [14] on the ImageNet classification task.

Why is L1 norm used in photometric reconstructions
and L2 norm used in perceptual loss? l1 loss is used in
photometric error as it imposes a “sharper” reconstruction,
which can lead to sparser solutions than l2. l2 is applied
in the deep feature space where it penalizes larger errors,
which can significantly affect the photometric reconstruc-
tions.

Edge-preserving smoothness loss. We follow the previ-
ous works of [5, 6, 10, 8] and adopt an edge-aware smooth-
ness loss to guide our PLADE-Net in producing sharp but
smooth depth estimates as given by:

lLds = ||∂xD′L � e−γ|∂xIL|||1 + ||∂yD′L � e−γ|∂y IL|||1 (3)

1



Outputs Layer descriptions Inputs Channels Feature sizes
IL Input image - 3 H×W
P Raw (x, y) pixel locations - 2 H×W
Fnpe 1×1Conv, ELU, 1×1Conv, ELU P 8 H×W
Conv0 3×3Conv, ELU, ResBlock IL 64 H×W
Conv0LR 3×3Conv, ELU, ResBlock I(1/2)L 64 H/2×W/2
Conv1 3×3Conv(s2), ELU, ResBlock Concat(Conv0, Fnpe) 128 H/2×W/2
Conv2 3×3Conv(s2), ELU, ResBlock Concat(Conv1, Fnpe, Conv0LR) 256 H/4×W/4
Conv3 3×3Conv(s2), ELU, ResBlock Concat(Conv2, Fnpe) 256 H/8×W/8
Conv4 3×3Conv(s2), ELU, ResBlock Concat(Conv3, Fnpe) 256 H/16×W/16
Conv5 3×3Conv(s2), ELU, ResBlock Concat(Conv4, Fnpe) 256 H/32×W/32
Conv6 3×3Conv(s2), ELU, ResBlock Concat(Conv5, Fnpe) 256 H/64×W/64
Dec6 Nearest, 3×3Conv, ELU Conv6 128 Conv5
iConv6 3×3Conv, ELU Concat(Dec6, Conv5) 256 Conv5
Dec5 Nearest, 3×3Conv, ELU iConv6 128 Conv4
iConv5 3×3Conv, ELU Concat(Dec5, Conv4) 256 Conv4
Dec4 Nearest, 3×3Conv, ELU iConv5 128 Conv3
iConv4 3×3Conv, ELU Concat(Dec4, Conv3) 256 Conv3
Dec3 Nearest, 3×3Conv, ELU iConv4 128 Conv2
iConv3 3×3Conv, ELU Concat(Dec3, Conv2) 256 Conv2
Dec2 Nearest, 3×3Conv, ELU iConv3 128 Conv1
iConv2 3×3Conv, ELU Concat(Dec2, Conv1) 128 Conv1
Dec1 Nearest, 3×3Conv, ELU iConv2 64 Conv0
DL

L 3×3Conv Concat(Dec1, Conv0) N H×W
DPR

L σ({g(DL
Ln
, dn)}N0 ) DL

L, dn N H×W
I′R

∑N
n=0 g (IL, dn)� DPR

Ln
, IL, DPR

L , dn 3 H×W
DPL

L σ(DL
L) DL

L N H×W
D′L

∑N
n=0 dnDPL

Ln
DPL

L , dn 1 H×W
ResBlock ELU(3×3Conv(ELU(3×3Conv(X))) + X) X X X
dn dn = dmaxe

ln dmax/dmin(n/N−1) n: Channel number 1 1

Table 1. Detailed network architecture of our PLADE-Net. s2: Stride of 2. Nearest: Nearest up-scaling to the size of corresponding encoder
layer (skip connection). ELU: Exponential Linear Unit. DL

L: Left disparity logit volume. DPR
L : Right-from-left disparity probability

volume. I′R: Synthetic right view. DPR
L : Left disparity probability volume. D′L: Left disparity estimate. dn: Exponential disparity

quantization level. X denotes any feature map input to the ResBlock.

where γ = 2 regulates the amount of edge preservation [8]
and � is the Hadamard product.

3.2. Second Training Stage Total Loss

The total loss ls2 for the second training stage adds our
novel distilled matting Laplacian loss (ldm), a deep corr-l1
loss (ldc), and the mirror loss (lm) in [8] to an occlusions
free ls1 loss. ls2 is defined by:

ls2 = ls1 + lm + αdmldm + αdcldc, (4)

where αdm = 0.25 and αdc = 0.01 are empirically set to
weight the contributions of the distilled matting Laplacian
and the deep corr-l1 losses, respectively. Our proposed deep
correlation (ldc) and distilled matting Laplacian (ldm) losses
are described in detail in our main paper.

Occlusions-Free ls1. The l1 and lp components of ls1
are weighted by the right-view occlusion mask OR during
the second stage of training to remove the occluded contents
which are visible in the right view but hidden in the left

view. OR is computed by the Mirror Occlusion Module
proposed in [8]. 0 ≤ OR ≤ 1 is active low on the occluded
regions. The occlusions-free first stage loss is then given
by:

ls1 = ||OR � (I′R − IR)||1 + αpl
OR
p + αdslds, (5)

where is lOR
p is the occlusions-free perceptual loss weighted

by OR, and is given by:

lOR
p =

3∑
l=1

||φl(OR� I′R+(1−OR)� IR)−φl(IR)||22, (6)

where OR combines the non-occluded contents of I′R with
the occluded contents of IR. Note that the smoothness loss
remains the same during both training stages, with the dif-
ference that αds = 0.0016 during the second step of train-
ing.

Mirror loss. This term helps in removing the occlusion
artifacts to the left side of the objects in the scene by super-
vising the left-occluded contents with a mirrored disparity
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Outputs Layer descriptions Inputs Channels Feature sizes
IL Input left view - 3 H×W
P Raw (x, y) pixel locations - 2 H×W
Fnpe 1×1Conv, ELU, 1×1Conv, ELU P 8 H×W
Conv0 3×3Conv, ELU, ResBlock IL 64 H×W
Conv0LR 3×3Conv, ELU, ResBlock I(1/2)L 64 H/2×W/2
Conv1 3×3Conv(s2), ELU, ResBlock Concat(Conv0, Fnpe) 128 H/2×W/2
Conv2 3×3Conv(s2), ELU, ResBlock Concat(Conv1, Fnpe, Conv0LR) 256 H/4×W/4
Conv3 3×3Conv(s2), ELU, ResBlock Concat(Conv2, Fnpe) 256 H/8×W/8
Conv4 3×3Conv(s2), ELU, ResBlock Concat(Conv3, Fnpe) 256 H/16×W/16
Conv5 3×3Conv(s2), ELU, ResBlock Concat(Conv4, Fnpe) 256 H/32×W/32
IR Input right view - 3 H×W
Conv0r 3×3Conv, ELU, ResBlock IR 64 H×W
Conv1r 3×3Conv(s2), ELU, ResBlock Concat(Conv0r, Fnpe) 128 H/2×W/2
Conv2r 3×3Conv(s2), ELU, ResBlock Concat(Conv1r, Fnpe, Conv0LR) 256 H/4×W/4
Conv3r 3×3Conv(s2), ELU, ResBlock Concat(Conv2r, Fnpe) 256 H/8×W/8
Conv4r 3×3Conv(s2), ELU, ResBlock Concat(Conv3r, Fnpe) 256 H/16×W/16
Conv5r 3×3Conv(s2), ELU, ResBlock Concat(Conv4r, Fnpe) 256 H/32×W/32
Conv6 3×3Conv(s2), ELU, ResBlock Concat(Conv5, Conv5r, Fnpe) 256 H/64×W/64
Dec6 Nearest, 3×3Conv, ELU Conv6 128 Conv5
iConv6 3×3Conv, ELU Concat(Dec6, Conv5) 256 Conv5
Dec5 Nearest, 3×3Conv, ELU iConv6 128 Conv4
iConv5 3×3Conv, ELU Concat(Dec5, Conv4) 256 Conv4
Dec4 Nearest, 3×3Conv, ELU iConv5 128 Conv3
iConv4 3×3Conv, ELU Concat(Dec4, Conv3) 256 Conv3
Dec3 Nearest, 3×3Conv, ELU iConv4 128 Conv2
iConv3 3×3Conv, ELU Concat(Dec3, Conv2) 256 Conv2
Dec2 Nearest, 3×3Conv, ELU iConv3 128 Conv1
iConv2 3×3Conv, ELU Concat(Dec2, Conv1) 128 Conv1
Dec1 Nearest, 3×3Conv, ELU iConv2 64 Conv0
DL

L 3×3Conv Concat(Dec1, Conv0) N H×W
DPR

L σ({g(DL
Ln
, dn)}N0 ) DL

L, dn N H×W
I′R

∑N
n=0 g (IL, dn)� DPR

Ln
, IL, DPR

L , dn 3 H×W
DPL

L σ(DL
L) DL

L N H×W
D′L

∑N
n=0 dnDPL

Ln
DPL

L , dn 1 H×W
ResBlock ELU(3×3Conv(ELU(3×3Conv(X))) + X) X X X
dn dn = dmaxe

ln dmax/dmin(n/N−1) n: Channel number 1 1

Table 2. Detailed network architecture of our proposed PLADE-NetS. Encoder weights are shared.

estimate D′Lmr [8]. D′Lmr is obtained from a horizontally
flipped version of the input image I′L by a fixed copy of the
PLADE-Net with only the first stage of training. The mirror
loss is weighted by the left occlusion mask OL, and is given
by:

lm = (1/max(D′Lmr))||(1−OL)� (D′L −D′Lmr)||1 (7)

where max(D′Lmr) is the maximum disparity value in
D′Lmr that normalizes the mirror loss.

4. More Details on Neural Positional Encoding
Positional encoding (PE) has been used in natural lan-

guage processing (NLP) to provide the models with means
of understanding the location of a word relative to the text in
which it appears [16]. In “Attention Is All You Need” [16],

positions are encoded by several sinusoids with varying fre-
quencies, converting each position into a 512-element vec-
tor. In the case of image processing, adopting the positional
encoding in [16] is un-permissible, as adding 512 channels
to each CNN layer would be computationally too expensive.
For this reason, we propose to use neural positional encod-
ing (NPE) instead, which shows good performance while
adding only a few channels to each convolutional stage in
our PLADE-Net’s encoder. We explored the PE in [16] with
eight sinusoids (or eight channels) and observed poor per-
formance with no improvements in some metrics and even
deterioration in others, as shown in Table 3. Such perfor-
mance difference shows that our proposed NPE is more suit-
able for image processing, where computing budgets limit
the number of positional features.
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Ref Methods PP Sup Data #Par abs rel sq rel rmse rmselog δ1 δ2 δ3

Improved Eigen Test Split [15]
our PLADE-Net without PE S K+CS 15 0.075 0.317 2.990 0.111 0.938 0.989 0.997
our PLADE-Net with [16]’s PE S K+CS 15 0.070 0.298 3.100 0.111 0.935 0.989 0.998
our PLADE-Net (narrow) S K+CS 10 0.072 0.308 3.064 0.112 0.936 0.990 0.998
our PLADE-Net (wide) S K+CS 29 0.070 0.295 2.961 0.108 0.941 0.991 0.998
our PLADE-Net S K+CS 15 0.070 0.291 2.910 0.107 0.942 0.990 0.998

Table 3. Evaluations on the improved KITTI Eigen test split [15] for models with [16]’s positional encoding, less (narrow), and
more (wide) network parameters in the first stage of training. S indicates training from stereo. Metrics are the lower the better and
the higher the better . Best and second best metrics. Results capped to 80m.

Figure 1. Visualization of estimated Neural Positional Encodings (NPE).

4.1. Visualization of Estimated Positional Features

We visualize the estimated positional features versus the
raw (x, y) pixel locations in figure 1 and notice interesting
properties. While some features generate activations simi-
lar to the Y-axis (features 1, 2, and 3), no feature map seems
to directly represent the X-axis. Interestingly, feature F 4

npe

depicts a gradient circle near the center of the image, sug-
gesting a means of learning the relative position of the input
pixels versus the lens or projection distortions discussed in
Section 3.2 of our main paper.

5. More Results on the KITTI dataset
We provide additional results on the KITTI Eigen test

split [3] in Figure 2. As can be observed, our PLADE-Net
consistently generates sharper, more detailed, and more ac-
curate depth estimates than the previous SOTA [17, 10, 8].

5.1. Varying the Number of Network Parameters

For the sake of completeness, we explored wider and
narrower versions of our PLADE-Net by varying the num-
ber of learnable filters in its auto-encoder backbone. Table 3
shows the performance of the narrower and wider versions
of our PLADE-Net, with 10M and 29M parameters respec-
tively, for the first stage of training. Our PLADE-Net (nar-
row) has half the number of filter channels in the Conv2 and
Conv3 layers in Table 1, and does not perform as good as
our base PLADE-Net. On the other hand, our PLADE-Net
(wide) has the double of number of parameters in the Conv5
and Conv6 layers, and yields no improvements with respect
our base PLADE-Net. Such behaviour confirms that, for
the single view depth estimation task, shallow feature ex-
traction plays a critical role.

5.2. Single-View Versus Stereo

We compare the depth estimates of the single-view and
stereo-view input versions of our PLADE-Net on the KITTI
Eigen test split [3] in Figure 4. As can be noted, both
the PLADE-Net and PLADE-NetS generate detailed depth
estimates, achieving 95% and 98.9% in δ1 accuracy, re-
spectively. Interestingly, the single-view estimates of our
PLADE-Net, with lower quantitative accuracy than the
PLADE-NetS, appear to generate more consistent depths in
certain regions, like the windows, the van, and the traffic
signs in Figure 4 rows 4, 6, and 8, respectively. It is worth
mentioning that future research works could explore train-
ing the PLADE-Net and the PLADE-NetS simultaneously
to exploit each network’s strong points to self-supervise the
other.

5.3. Textured Point Clouds

In some cases, it is hard to visualize the subtle differ-
ences between the depth estimates when presented as 2D
maps. To provide further evidence of the superiority of our
method versus the previous SOTA, we provide novel views
synthesized from textured point clouds obtained from the
PLADE-Net’s depth estimates in Figure 3. It is noted in Fig-
ure 3 that in comparison with the previous SOTA of FAL-
net [8], our PLADE-Net manages to keep various 3D ge-
ometries properly: the door frame and the van’s rear bumper
in the first column; the building structure and car geometries
in the second column; the traffic lights in the third column;
and the building and pedestrian geometries in the last col-
umn.
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Figure 2. Additional qualitative results on the KITTI [4] dataset. Our Pixel Level Accurate Depth Estimation Network (PLADE-Net)
consistently generates sharper and more detailed depth estimates.
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Figure 3. Textured point clouds (generated from depth estimates) at novel view-points. From top to bottom: Input images, renders by
FAL-net [8], and renders by our PLADE-Net. The camera is translated and rotated to [0m, 0.2m, 3m,−11◦, 0◦, 0◦] in the leftmost two
columns, and translated to [−0.9m, 0m, 2m, 0◦, 0◦, 0◦] in the rightmost two columns.

6. More Results on the CityScapes dataset

To further show the generalization capabilities of our
PLADE-Net, results of only training on CityScapes (CS) [2]
and validating on the KITTI Eigen test split [3] are provided
in Table 4 and Figure 4. As can be observed, our method
generalizes the best among the competing methods, show-
ing higher accuracy and lower error metrics in Table 4. Our
PLADE-Net trained on CityScapes [2] generates very de-
tailed and plausible depths on the KITTI [4] dataset. As can
be observed in Figure 4, the depth estimates of our PLADE-
Net trained on CityScapes only (CS) are on pair with the
PLADE-Net (K+CS) depth estimates, which demonstrates
the excellent generalization power of our proposed method.

7. More Results on the Make3D dataset

We provide additional results on the Make3D [13]
dataset in Figure 5 and compare with previous existing
works [6, 8]. It is clear that our method consistently gener-
ates more detailed depth estimates in the previously unseen
Make3D [13] dataset.

8. Video01

We provide a video from sequence 18 from the KITTI
odometry dataset [4], which is not included in the KITTI
Eigen train split [3]. Our PLADE-Net generates a consistent
sequence, even when only being fed with individual images.
The inference is also very fast and light, taking only an
average of 13 milliseconds per full-resolution (1242×375)
image on a TitanXP GPU with 2GB of allocated memory.
Note that each depth estimate is individually normalized in
the range [0, 1] for easier visualization.
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