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1. Overview
This document provides additional implementation de-

tails and qualitative results to supplement the main paper.
Additional details are given about the object subsets used
while training networks on ContactPose (Section 2) and
HO-3D (Section 3). Training settings for the DeepCon-
tact estimation network (Section 4), hyperparameters for
the contact optimization procedure (Section 5), and more
details on the evaluations (Section 6) are discussed. Finally,
we provide more qualitative examples of the full pipeline
running (Section 7).

2. Selection of Objects from ContactPose
The ContactPose dataset contains grasps from 50 partic-

ipants across 25 items in two grasp intents, handoff and use.
The dataset additionally includes right-handed, left-handed,
and bimanual grasps where both hands are used. In all Con-
tactOpt experiments, only right-handed grasps were used.
These criteria result in the use of only 1768 grasps of the
dataset’s full 2258 grasps.

3. Image-Based Pose Estimator Baseline
The HO-3D dataset contains many pre-grasp and post-

grasp poses where the hand is not in contact with the object.
Because the ContactOpt is intended for poses in contact, we
filter out frames where the minimum distance between the
ground truth hand and object surfaces is greater than 2 mm.
We perform all experiments using our own train/test split
created from the official HO-3D training split, since the la-
bels for the official testing split are not publicly released and
the evaluation server does not allow frame filtering. This
train/test split divides sequences with filtered frames by an
80/20 ratio. The testing split contains unseen camera angles
of objects in the training split.

We use the baseline image-based pose estimator from
Hasson et al. [2]. Because the accompanying trained model
is trained on the entire HO-3D official training split, we re-
train this model using the accompanying code at [2] on our
training split. The re-trained model achieves an MPJPE of

57.7 mm on our testing split, which is comparable to the
55.2 mm MPJPE achieved by Hasson et al.’s released model
on the HO-3D official test split. These MPJPE numbers
are calculated without doing translation, scale, or rotation
alignment.

4. DeepContact

DeepContact is based on PointNet++ by Qi et al [5].
However, the radius of the grouping layers is modified as
the size of the hand and object are smaller than the objects
PointNet++ was originally trained on. The radius of the
first grouping layer ball query is set to 0.1m, and the sec-
ond layer is set to 0.2m.

Instead of directly regressing the contact values from
[0, 1], DeepContact estimates the contact value as a classifi-
cation task. The range [0, 1] is evenly split into 10 bins. The
training loss is weighted to account for class imbalance.

Before contact prediction, the hand and object meshes
are jointly normalized so that the centroid of the object lies
at (0, 0, 0) and the centroid of the hand lies along the vec-
tor (1, 0, 0). The network is trained using the ADAM opti-
mizer with a learning rate of 0.01 dropping to 0.001 after 5
epochs.

5. Pose Optimization Hyperparameters

In addition to the hyperparameters listed the main paper,
the pose optimization considers the following additional
settings:

1. λH : Weight of hand contact loss in optimization objec-
tive. Qualitatively, hand contact is often more impor-
tant to grasp reconstruction than object contact. Often
grasps on different objects have different object con-
tact maps, but very similar hand contact maps. Addi-
tionally, since DeepContact is applied to novel objects
but the hand representation does not change across
datasets, estimated hand contact has more reliable pre-
dictions.

1



2. λO: Weight of object contact loss in optimization ob-
jective.

3. λpen: Weight of penetration cost in optimization ob-
jective. This term penalizes interpenetration of the
hand and the object as described in the paper.

4. λopt trans: Translation optimization weight. This pro-
vides a relative weight for the different intrinsic scales
of optimized parameters. This controls the amount the
root translation vector is updated. High weights allow
the optimizer to move the hand root long distances.

5. λopt rot: Rotation optimization weight. This provides
a relative weight for the different intrinsic scales of op-
timized parameters. This controls the amount the root
rotation angle is updated.

6. nrestart: Number of random restarts. To recover from
local minima, for example if the hand is “stuck” inside
the object, the optimization is initialized multiple times
with random perturbations. The optimization with the
lowest final loss is taken.

7. drestart: Mean perturbation distance of a random
restart. For each restart, normally distributed noise is
added to the hand translation. This is set proportion-
ally to the initial translation error.

In the main paper, three tasks are evaluated:

• Refining ContactPose Dataset Poses (Small): The al-
ready high-quality poses from the ContactPose ground
truth annotations are refined further using the mea-
sured contact.

• Perturbed ContactPose (Large): The original dataset
poses are perturbed by adding translation and pose
noise. ContactOpt is evaluated in recovering the ini-
tial poses. Hand and object contact is inferred using
DeepContact.

• Image-Based Pose Estimates (Image): Hand pose es-
timates are generated by a baseline pose estimator on
the HO-3D dataset. These poses are the initialization
for refinement, and contact is inferred using DeepCon-
tact.

The hyperparameters for each evaluation phase are
shown in Table 1

6. Evaluations
6.1. Physics Simulation

Multiple prior works have attempted to quantify the re-
alism of grasps using a physics simulation engine [3, 4, 6].

Small Large Image
λH 0.0 2.0 3.0
λO 1.0 1.0 1.0
λpen 600.0 600.0 300.0

λopt trans 0.03 0.3 0.3
λopt rot 1.0 1.0 1.0
nrestart 1 8 8
drestart 0cm 4cm 2cm

Table 1. Hyperparameters of ContactOpt for evaluation settings in
the main paper.

Following these, we obtained results using a PyBullet-based
[1] evaluation environment. Results were obtained that
were numerically favorable to our approach.

However, we found that the results were sensitive to sim-
ulation details, such as global orientation, friction coeffi-
cients, and object mass. In particular, the handling of pene-
tration due to hand compliance had a large effect on results.

Due to the sensitivity of the simulation, physics evalu-
ation results were not included. The team instead decided
to focus on evaluation methods with more straightforward
interpretation.

6.2. Perceptual Evaluation

Figure 1. Human evaluators are shown a 3D viewer when judging
perceptual grasp quality. The evaluators can rotate/pan/zoom the
viewer to fully understand each grasp. Once their choice is made,
they press the corresponding key on their keyboard.

To evaluate the holistic grasp quality, we used nine hu-
man evaluators to judge quality. This study was approved
by the academic institution’s Institutional Review Board
(IRB). The study recruited participants who were not fa-
miliar with the research. Each evaluator judged 75 grasps
for each of the evaluation tasks.

The study was conducted as a two-alternative force
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choice (2AFC) test. This format was selected instead of a
numerical rating test due to the subtle differences between
grasps when performing small-scale refinement. We still
found that non-experts had difficulty comparing grasps with
small differences, so pairs with less than 5mm of MPJPE
movement were filtered out. This accounts for 47% of the
results for the small-scale evaluation. To ensure that the
grasps were judged by pose alone, contact maps were not
shown on the hand or object.

7. Further Qualitative Results
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Figure 2. Examples of refining hand poses when the ground-truth thermal contact map is given. Better agreement between the hand pose
and object pose is shown, in addition to the resolution of heavy interpenetration or gaps between the hand and object.
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Figure 3. Examples of refining poses from the Perturbed ContactPose dataset. This dataset has been generated by heavily perturbing the
ContactPose annotations. The last case represents a failure that is typical on thin objects, where the small volume leads to low penetration
cost and causes unrealistic interpenetration.
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Refining Image-Based Pose Estimates

Figure 4. Examples of refining poses generated by an image-based pose estimator. The objects and poses are from the HO-3D dataset,
which DeepContact was not trained on. Note that the contact predictions are often more sparse. The last sample represents a failure where
the starting pose was too far away for the optimizer to produce a good result.
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