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Depth from Motion Parallax & Detection

Building off of the model from Section 3.1, if there is
x- or y-axis camera motion between observations, we can
solve for object dept using corresponding changes in bound-
ing box location (e.g., Box1 to Box3 in Figure 2).

To start, we account for any incidental depth-based
changes in scale by reformulating (6) as

Zj = Zi

⇣
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⌘
. (21)

Next, we use (21) in (4) to relate bounding box center coor-
dinate xj to corresponding 3D object coordinate Xj as
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Given a static object, changes in lateral object position Xj

occur only from changes in camera position CXi (2). Thus,

Xj �Xi = �(CXj � CXi). (23)

Finally, using (22) and (23), we can solve for Zi by com-
paring two observations i, j with motion parallax as
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Notably, (24) can also be derived using vertical motion as
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, (25)

and scale measure hi
hj

can replace wi
wj

in (24) or (25). Also,
if there is no z-axis camera motion (i.e., Zi = Zj), then
wi
wj

= hi
hj

= 1 and we can simplify (24) and (25) as
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=
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. (26)

Comparison of Depth Estimation Cues

We provide ODMD Test Set results in Table 3 to com-
pare solutions using different depth estimation cues. We

Table 3. ODMD Results for Various Depth Estimation Cues.
Mean Percent Error (20)

Object Perturb
Analytical Depth Depth Camera Object All
Estimation Cue Method Norm. Motion Detect. Robot Sets

Learning-based Methods
Full x, y, z Motion DBoxNS (14) 0.5 3.9 6.4 12.5 5.8

Analytical Methods
Optical Expansion BoxLS (9) 0.0 4.5 21.6 21.2 11.8
Motion Parallax Zn (24)-(25) 0.0 33.9 51.6 65.6 37.8
Optical Expansion Zn (8) 0.0 5.2 80.9 124.1 52.5

evaluate three different analytical solutions that use single
cues and DBoxNS, which uses full x, y, z motion.

For the motion parallax solution, we use the average of
the lateral (24) and vertical (25) motion parallax solutions,
using scale measure wi

wj
in (24) and hi

hj
for (25). Notably,

this is a two-observation solution, so we use the end point
observations of each example, i.e., i = n = 10 and j = 1.
For comparison, we similarly evaluate a two-observation,
optical expansion-based solution, which uses the average of
(8) when using wi

wj
and hi

hj
for the end point observations.

Motion parallax performs the best overall for the two-
observation solutions in Table 3. The optical expansion so-
lution performs surprising well with camera motion pertur-
bations but much worse on the test sets with object detec-
tion errors (i.e., Perturb Object Detection and Robot). Both
solutions are perfect on the error-free Normal Set.

The BoxLS solution, which uses optical expansion over
all n observations, significantly outperforms both two-
observation solutions, especially on test sets with object de-
tection errors. Thus, for applications with real-world detec-
tion (e.g., the Robot Set), we find that incorporating many
observations is more beneficial than choosing between op-
tical expansion or motion parallax with fewer observations.

DBoxNS, using all n observations and full x, y, z motion,
performs the best overall and on all test sets with any kind
of input errors. Admittedly, some error mitigation likely
results from DBoxNS using a probabilistic learning-based
method. Still, DBoxNS trains on ideal data without any input
errors, so DBoxNS predictions are based on an ideal model,
just like the analytical methods. Accordingly, we postulate
that DBoxNS’s improvement over BoxLS is primarily the re-
sult of learning full x, y, z motion features, which are more
reliable than a single depth cue (e.g., DBoxz

p
in Table 1).

Although our analytical model in Section 3.1 and current
methods focus on x, y, z camera motion, adding rotation as
an additional depth estimation cue is an area of future work.
Nonetheless, our state-of-the-art results on the ODMS Driv-
ing Set in Table 2 do include examples with camera rotation
from vehicle turning [15, Section 5.2] (Figure 6, center). Fi-
nally, as a practical consideration for robotics applications,
motion planners using our current approach can simply in-
corporate rotation after estimating depth.



Camera-based Constraints on Generated Data

When generating new ODMD training data in Sec-
tion 3.3, we consider the full camera model to ensure that
generated 3D objects and their bounding boxes are within
the camera’s field of view. To derive this constraint, we first
note that the center of a bounding box (1) is within view if
xi 2 [0,WI ], yi 2 [0, HI ], where WI , HI are the image
width and height. Using (4), we represent these constraints
for 3D camera-frame coordinates Xi, Yi as
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We also consider constraints based on the maximum ob-
ject size smax and camera movement range �pmax (15). We
use �pmax by defining it in terms of its components parts as
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⇤|
. (29)

Then, using smax, �pmax, and the initial object position⇥
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⇤| (16), we update the constraints in (27) as
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and, equivalently for height, update constraints in (28) as
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where Z1 � �CZmax accounts for camera approach to the
object, �CXmax and �CY max account for lateral and verti-
cal camera movement, and smax

2 accounts for object width
and height. Because (30)-(31) use the maximum camera
movement range and object size, they guarantee, first, (27)-
(28) are satisfied for all n object positions

⇥
Xi, Yi, Zi

⇤| and,
second, all corresponding bounding boxes are in view.

Given X1, Y1, we can find the lower bound for the initial
object depth (Z1min) by replacing Z1 with Z1min in (30) and

(31) to find
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In other words, given an object’s center position and max-
imum size, the minimum viewable depth is constrained by
the closest image boundary after camera movement. Note
that there is no equivalent upper bound for Z1max.

Given Z1, similar to (32), we can find the lower and up-
per bounds for X1, Y1 in (16) using (30) and (31) to find
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When generating ODMD training data in Section 3.3,
we cannot select the Z1min constraint simultaneously with
the X1min, Y1min, X1max, Y1max constraints in (33). Alter-
natively, we choose a Z1min value greater than the lower
bound for X1, Y1 = 0 in (32), then randomly select Z1 ⇠
U [Z1min, Z1max] for each training example. Once Z1 is ran-
domly determined, we use (33) to find
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which is the exact solution we use in (16). Notably, in ab-
sence of making adjustments for the specific object size or
camera movement range of each example, (34) provides the



Table 4. Detailed ODMD Results.
Object Percent Error (20)
Depth Range Standard

Method Mean Median Minimum Maximum Deviation
Normal Set

DBoxp 1.73 0.96 0.0002 48.21 2.90
DBoxAbs 1.11 0.82 0.0004 21.10 1.19
DBoxNS 0.54 0.38 0.0001 8.68 0.63
BoxLS 0.00 0.00 0.0000 0.00 0.00

DBoxzp 12.89 8.54 0.0062 80.74 13.23
Perturb Camera Motion Set

DBoxp 2.45 1.86 0.0008 23.61 2.28
DBoxAbs 2.05 1.55 0.0002 19.45 1.96

DBoxNS 3.91 2.93 0.0021 47.94 3.82
BoxLS 4.47 3.13 0.0007 43.02 4.57
DBoxzp 12.48 8.42 0.0025 74.18 12.18

Perturb Object Detection Set
DBoxp 2.54 1.54 0.0020 45.94 3.39
DBoxAbs 1.75 1.26 0.0007 19.51 1.81

DBoxNS 6.35 1.98 0.0005 415.68 19.56
BoxLS 21.60 8.90 0.0003 158.04 28.27
DBoxzp 15.00 9.83 0.0189 296.31 16.93

Robot Set
DBoxp 11.17 8.31 0.0022 253.02 13.94

DBoxAbs 13.29 9.44 0.0024 223.76 14.90
DBoxNS 12.47 8.11 0.0092 656.85 25.03
BoxLS 21.23 12.17 0.0010 262.48 26.92
DBoxzp 21.96 14.64 0.0099 342.40 26.39

Table 5. Detailed ODMS Results.
Object Percent Error (20)
Depth Range Standard

Method Mean Median Minimum Maximum Deviation
Normal Set

DBoxzp 11.82 8.17 0.0049 167.80 12.42
BoxLS 13.66 10.49 0.0025 137.39 11.97
DBoxzNS 9.20 6.69 0.0048 146.79 9.55

DBoxzAbs 21.31 11.98 0.0119 451.54 33.95
Perturb Set

DBoxzp 20.34 15.25 0.0008 220.46 19.73

BoxLS 36.62 27.76 0.0050 141.85 30.06
DBoxzNS 31.55 19.95 0.0205 644.55 48.03
DBoxzAbs 25.49 15.12 0.0033 265.11 30.68

Robot Set
DBoxzp 11.45 6.29 0.0061 418.41 23.81

BoxLS 17.62 9.15 0.0011 390.12 34.22
DBoxzNS 39.25 5.97 0.0082 8778.45 310.94
DBoxzAbs 20.36 10.28 0.0033 358.86 32.80

Driving Set
DBoxzp 24.84 18.99 0.0323 213.93 22.83

BoxLS 33.29 26.50 0.1783 294.91 31.10
DBoxzNS 37.31 21.43 0.0108 613.14 55.75
DBoxzAbs 53.13 55.89 0.0878 296.88 26.65

greatest range of initial positions that also guarantees the
object is in view for all n observations. Finally, (34) is lin-
ear, so we vectorize it for large batches of training examples.

Detailed ODMD and ODMS Results

We provide more comprehensive and detailed ODMD
and ODMS results in Tables 4 and 5. Specifically, we pro-
vide a more precise mean percent error (20) and include the

Table 6. Detailed ODMD Results (Absolute Error).
Object Absolute Error (35)
Depth Range Standard

Method Mean Median Minimum Maximum Deviation
Normal Set (cm)

DBoxp 1.42 0.69 0.0002 46.57 2.62
DBoxAbs 0.87 0.59 0.0003 11.56 0.95
DBoxNS 0.41 0.28 0.0001 8.97 0.53
BoxLS 0.00 0.00 0.0000 0.00 0.00

DBoxzp 10.30 6.22 0.0040 77.13 11.68
Perturb Camera Motion Set (cm)

DBoxp 1.93 1.38 0.0005 20.84 1.93
DBoxAbs 1.63 1.13 0.0001 17.17 1.65

DBoxNS 3.04 2.16 0.0024 41.03 3.12
BoxLS 3.44 2.37 0.0005 33.65 3.66
DBoxzp 9.92 6.26 0.0022 67.80 10.57

Perturb Object Detection Set (cm)
DBoxp 2.06 1.11 0.0017 42.25 3.07
DBoxAbs 1.39 0.93 0.0005 15.91 1.55

DBoxNS 5.01 1.47 0.0004 281.55 15.07
BoxLS 17.58 7.08 0.0002 121.45 23.67
DBoxzp 11.81 7.12 0.0089 146.10 13.43

Robot Set (cm)
DBoxp 8.08 5.79 0.0012 260.28 12.06
DBoxAbs 8.83 6.71 0.0018 55.83 7.87

DBoxNS 9.23 5.57 0.0045 579.77 23.51
BoxLS 14.49 8.63 0.0007 197.56 17.70
DBoxzp 14.65 10.29 0.0089 161.98 14.69

Table 7. Detailed ODMS Results (Absolute Error).
Object Absolute Error (35)
Depth Range Standard

Method Mean Median Minimum Maximum Deviation
Normal Set (cm)

DBoxzp 3.65 2.70 0.0020 30.77 3.66

BoxLS 4.74 3.43 0.0006 55.77 4.81
DBoxzNS 2.98 2.14 0.0008 82.58 3.74
DBoxzAbs 5.57 3.98 0.0059 50.57 5.81

Perturb Set (cm)
DBoxzp 7.19 4.46 0.0003 77.16 8.06
BoxLS 15.17 8.30 0.0016 79.01 16.45
DBoxzNS 12.21 5.77 0.0091 295.98 23.27
DBoxzAbs 6.68 5.20 0.0004 37.75 5.65

Robot Set (cm)
DBoxzp 3.34 1.78 0.0013 88.89 5.94

BoxLS 5.21 2.58 0.0005 79.71 10.54
DBoxzNS 12.06 1.71 0.0019 1634.35 84.61
DBoxzAbs 5.64 3.04 0.0010 70.20 7.93

Driving Set (m)
DBoxzp 3.63 1.86 0.0031 37.95 5.00

BoxLS 5.08 2.35 0.0142 58.07 8.07
DBoxzNS 5.03 2.37 0.0004 105.97 8.43
DBoxzAbs 9.05 5.82 0.0046 57.60 9.24

median, range, and standard deviation for each test set.
We also provide ODMD and ODMS results for the ab-

solute error in Tables 6 and 7, which we calculate for each
example as

Absolute Error =
���Zn � Ẑn

��� , (35)

where Zn and Ẑn are ground truth and predicted object
depth at final camera position pn. Notably, we use percent



Figure 8. ODMD Robot Test Set Examples (best viewed in electronic format). Every two rows show a ten-observation example
progressing from left to right, and we show the ground truth object depth in the final image. In the cheezit example (top two rows), the
camera perspective changes and the detected object partially leaves view (observations 8-10), causing a distortion to the bounding box
shape relative to earlier observations. In the peach example (middle two rows), the detected object completely leaves view during the final
two observations (9-10), providing no bounding box information at the prediction location. Finally, for the 16 mm die example (bottom),
the camera starts far away from the small object (1), which is not detected until the camera is closer in the final observation (10).

error (20) in the paper to provide a consistent comparison
across domains (and examples) with markedly different ob-
ject depth distances. For example, the 0.10 m absolute error
from Figure 7 is a much better result for a camera phone
application than it would be for robot grasping.

Object Motion Considerations

The ODMS Driving Set includes moving objects [[15],
Section 5.2]. On the other hand, our analytical model in
Section 3.1 assumes static objects. Nonetheless, DBoxz

p

achieves the current state-of-the-art result on the ODMS
Driving Set in Table 2. We attribute DBoxz

p
’s success to

training with camera movement perturbations (18). Note
that training with these perturbations improves robustness
to input errors for the relative distance changes between the
camera and object, whether caused by camera motion errors
or unintended motion of the object itself. In general, objects
that move much less than the camera are not an issue.

ODMD Robot Test Set Examples

For the ODMD Robot Test Set, we intentionally select
challenging objects and settings that make object detection
and depth estimation difficult. To illustrate this point, we
show a few example challenges in Figure 8.


