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Abstract

In this supplementary material, we first provide a review
for the attribution methods in the literature and discuss their
relationship to the interpretation of SR networks in Sec 1.
We also provide a review for the SR networks discussed in
the main text in Sec 2. The detailed training settings are
provided. At last, we provide more qualitative results in
Sec 3.

1. Review of Attribution Methods

In this section, we provide a review of attribution meth-
ods in the literature that are used for interpreting classifica-
tion networks. We also discuss their relationship with the
interpretation of super-resolution (SR) networks. As pre-
sented in the main text, given an input image I ∈ Rd and a
model S : Rd 7→ R that outputs the probability of I belongs
to a certain class, an attribution method provides attribution
maps AttrS : Rd 7→ Rd for S that are of the same size as
the inputs. Each dimension of these attribution maps cor-
responds to the “relevance” or “importance” of that dimen-
sion to the final output, which is often a class-specific score
in classification networks.
Gradient w.r.t. I . This method employs the gradient of
the predicted probability w.r.t. to the input I [29, 7].

GradS(I) =
∂S(I)

∂I
(1)

However, the vanilla gradient method suffers from the “sat-
uration” problem that the magnitude of this gradient tends
to be small. A little movement toward the direction of the
gradient will not change the predicted probability signifi-
cantly [32]. In Sec 3.4 of the main text, we show that for
the interpretation of SR networks, the “saturation” problem

also exist. Thus the vanilla gradient method is not appropri-
ate for interpreting SR networks.
The element-wise product of Gradient and the input.
This method was proposed to address the saturation prob-
lem and reduce visual diffusion [28], denoted as

Grad� IS(I) = I � ∂S(I)

∂I
. (2)

Ancona et al. [4] show that, for a network with only ReLU
activation function and no additive biases, this input gradi-
ent product is equivalent to DeepLift [28], and ε-LRP [6].
For the interpretation of SR networks, the pixel intensity
should not be part of the attribution as the textures and edges
may not change when the pixel intensity changes. Directly
calculate the product of the input intensity and the gradient
will introduce interference factors.
Guided Backpropagation (GBP). This method specifies
a change in how to calculate gradients for ReLU activations.
Let {f l, f l−1, . . . , f0} be the feature maps obtained dur-
ing the forward process by a deep neural network S, and
{rl, rl−1, . . . , r0} be the representation obtained during the
backward process. Springenberg et al. [31] propose GBP
that aims to zero out negative gradients during the compu-
tation of r. The map is computed as:

rl = 1rl+1>01f l>0r
l+1, (3)

where 1rl+1>0 represents keeping only the positive gradi-
ents and 1f l>0 indicates keeping only the positive activa-
tions. The usage scenarios of this method are relatively lim-
ited. For residual networks that are widely used in SR, this
method is not valid.
Integrated Gradients (IG). Most relevant to the method
proposed in this paper, IG also employs path integration
[12], but uses a black image as baseline image and linear
interpolation as the path function. IG is defined as:

IGS(I) = (I − I ′)×
∫ 1

0

∂S(I ′ + α(I − I ′))
∂I

dα, (4)
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where I ′ is the baseline black image and α is the parameter
of the interpolation. In Sec 3.4 of the main text, we discuss
the differences between the proposed local attribution maps
for SR networks and IG.
SmoothGrad and VarGrad. SmoothGrad [30] and Var-
Grad [1] are proposed to relieve the situation where the at-
tribution graph is full of noise. The SmoothGrad is defined
as:

SmoothGradS(I) =
1

N

N∑
i=1

GradS(I + ni), (5)

where ni are the noise vectors and ni ∼ N (0, σ2) are sam-
pled from a Gaussian distribution. Similar to SmoothGrad,
a variance analog of SmoothGrad can be defined as:

VarGradS(I) = V(GradS(I + ni)), (6)

where V represents to the variance. Seo et al. [26] theo-
retically analyze VarGrad showing that it is independent of
the gradient, and captures higher order partial derivatives.
For SR networks, adding noise to the input is destructive to
the output image [24, 13]. Thus both SmoothGrad and Var-
Grad can not be used to interpret SR networks. On the other
hand, SmoothGrad and VarGrad also face the challenge of
gradient saturation.
CAM, GradCAM and Guided GradCAM. Different
from the aforementioned gradient-based attribution meth-
ods, Class Activation Mapping (CAM) [40] generates class
activation maps using the global average pooling in convo-
lution neural networks. A CAM map for a particular cat-
egory indicates the discriminative image regions used by
the network to identify that category. Combining gradient-
based methods and CAM, Selvaraju et al. [25] further pro-
pose GradCAM that corresponds to the gradient of the class
score w.r.t. the feature map of the last convolution unit. For
pixel level granularity, GradCAM can be combined with
Guided Backpropagation through an element-wise prod-
uct. Since CAM is specially designed for high-level vi-
sion networks with global pooling layers, it cannot be easily
adapted to low-level vision models such as SR networks.
Perturbation-Based Methods. Different from the above
works that require the mathematical details of the model,
there are works that treat deep models as black-boxes.
These methods usually localize the discriminative image re-
gions by performing perturbation to the input. For instance,
Fong and Vedaldi [11] propose to explain neural networks
that are based on learning the minimal deletion to an image
that changes the model prediction. Similar to SmoothGrad
and VarGrad, the sensitivity of SR networks to disturbances
and perturbation makes it difficult to use these approach to
explain.

2. Collection of Models
In this section, we first describe the training settings in

our experiments and then briefly review the used SR net-
works. We use DIV2K training set [2] for training and the
size of LR image is 64×64. For optimization, we use Adam
[17] with the default settings that β1 = 0.9 and β2 = 0.999.
The learning rate is initialized as 1× 10−4 and decayed lin-
early at every 2× 105 updates. The size of minibatch is set
to 16. We next briefly review the used SR networks.
Early methods with fully convolutional architectures.
These methods include SRCNN [9], FSRCNN [10] and ES-
PCN [27]. What they have in common is that they only use
stacked convolution layers without residual or other deep
modules. SRCNN is the first deep SR network that consists
of only three convolution layers without upsampling layer –
it takes the bicubic interpolation result as input. FSRCNN
consists of eight convolution layers and uses deconvolution
layer as the upsampling layer. In ESPCN, pixel shuffle is
used innovatively as an upsampling operation, and this op-
eration is used on a large scale by subsequent SR networks.
In addition to the above networks, DDBPN [14] and Lap-
SRN [18] are also in the form of fully convolution networks
with different convolution strategies. LapSRN is a network
with progressive upsampling operations that super-resolves
low-resolution images in a coarse-to-fine laplacian pyramid
framework. DDBPN exploits iterative up- and downsam-
pling layers, aiming at providing an error feedback mecha-
nism for projection errors at each stage.
Networks with residual and dense connections. These
methods date back to SRResNet [19] that first introduce
residual connections [15] to deep SR networks. Some meth-
ods are proposed to improve the residual structure such
as EDSR [21], CARN [3] and MSRN [20]. Spatial fea-
ture transformation blocks are also introduced to SR net-
works [34, 13] to achieve interactive SR. Inspired by dense
connection network [16], RDN [38] and SRDenseNet [33]
with dense architecture was proposed. Combining residual
blocks and dense connections, residual-in-residual dense
net (RRBDNet) [35] was proposed. Recently, DRLN [5]
employs cascading residual on the residual structure to al-
low the flow of low-frequency information to focus on
learning high and mid-level features.
Networks with attention modules. In addition to inno-
vations in various short connections, attention modules are
also used to improve the performance of SR networks.
Zhang et al. [36] propose channel attention that compute
attention weights w.r.t. the whole channel. Zhao et al. [39]
propose pixel attention that compute attention weights us-
ing 1 × 1 convolution for each pixel. Non-local opera-
tion is also introduced in the form of attention module in
[37, 22]. SAN [8] utilizes both non-local attention modules
and second-order channel attention. Recently, CSNLN [23]
employs cross-scale non-Local attention module with inte-



gration into a recurrent neural network to learn cross-scale
feature correlation.

3. More Results
In this section, we exhibit more results. We first show

more examples of the “area of interest”. In Figure 8 of the
main text, we have shown the five images with the smallest
area of interest and also five images with the largest area
of interest. In Figure 1, we show more images with their
area of interest and the rank indices are also marked. In
Figure 2, Figure 3, Figure 4, and Figure 5, we show more
LAM results.
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