
Bilevel Online Adaptation for Out-of-Domain Human Mesh Reconstruction
**Supplementary Material**

We present the supplementary materials accompanying
our manuscript. In Section 1, we compare the convergence
speed of the 2D keypoint reprojection loss and the motion
loss corresponding to the third paragraph of the introduc-
tion. In Section 2, we analyze the training stability in terms
of critical hyper-parameters corresponding to the training
details of the manuscript. In Section 3, we conduct more
analysises on 3DPW [16], including the explanation about
two evaluation protocols mentioned in Section 4.1 of the
manuscript. In Section 4, we exhibit qualitative results of
the BOA on 3DHP [10]. In Section 5, we introduce the de-
tails of learning the base model.

1. Convergence Speed Analysis

Corresponding to the description in the third paragraph
of the introduction, Figure 1 exhibits the convergence speed
of the 2D keypoint reprojection loss LJ (the first term in
Equation (2) of the manuscript) and the motion loss Lm

when jointly learning multiple objectives. Specifically, we
randomly choose 100 images, and optimize on each images
for 100 times. The mean values of LJ and Lm are plot in
Figure 1. We select multiple loss weights (0.1,0.5 and 1.0)
of Lm for for convincing analysis. The results in Figure 1
demonstrate that LJ converges faster than Lm. Therefore,
in a small number of inference-stage optimization steps1,
the model may learn to fit the pose priors very quickly but
then get stuck trying to learn temporal consistency.

2. Training Stability

As mentioned in the Training details (in Section 4 of
the manuscript), here we analyze the training stability of
the proposed BOA framework. All hyper-parameters of
the BOA are listed in Table 1. We analyze the training
stability of the BOA in terms of critical hyper-parameters:
ones related to temporal constraints Lm and Lmt and the
learning rate α of lower-level weight probe. From Ta-
ble 2, we found that our model has similar performance in
various hyper-parameter settings. Other hyper-parameters

1A common practice [14] is to perform one-step optimization in online
adaptation for the sake of inference efficiency.
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Figure 1: Comparison of convergence speed between LJ
and Lm. The numbers in brackets represent loss weights.
For a fair comparison, the scale loss is normalized to [0,1].

Notation Value Description

µ1 0.1 The loss weight of motion loss Lm

µ2 0.1 The loss weight of consistent loss Lmt

τ 5 The interval from the previous image for Lm

δ 0.1 The coefficient of exponential moving average [13]

α 3e-8 The learning rate of lower-level weight probe
η 3e-6 The learning rate of upper-level update
β1 0.5 The decay rate of first moment in Adam [6]

γ1, γ2, γ3 10,1e-4,0.1 The loss weight of the three terms in LF

Table 1: Hyper-parameters of the BOA. Note that we list
the specific values on 3DPW.

(i.e. η, β1, γ1, γ2, γ3) are finetuned based on the setting of
SPIN [8].

3. More Analysises on 3DPW
Further explanation about # PS and # PH. Recall that
we mentioned the difference of protocols used in SPIN and
HMMR [5] in Section 4.1 of the manuscript. Here we fur-
ther explain the details. The evaluation results vary signif-
icantly in two different protocols. In practice, under the
same experimental setting, the PA-MPJPE is 58.8mm using
the protocol # PH, while the PA-MPJPE is 49.52mm with
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4e-6 6e-6 8e-6 1e-5

PA-MPJPE 49.85 51.59 49.52 49.91
MPJPE 77.45 81.12 77.26 77.79

(a) The learning rate α of lower-level update.

0.02 0.1 0.2 0.4

PA-MPJPE 51.3 49.5 51.7 50.7
MPJPE 81.4 77.3 82.0 78.9

(b) The loss weight µ1 of Lm.

0.02 0.1 0.2 0.4

PA-MPJPE 49.8 49.5 49.6 51.3
MPJPE 77.5 77.3 77.4 80.1

(c) The loss weight µ2 of Lmt.

0.1 0.5 0.7 0.9

PA-MPJPE 49.5 50.0 50.4 49.8
MPJPE 77.3 78.1 78.4 78.0

(d) The smoothing coefficient ε.

1 5 9 12

PA-MPJPE 51.2 49.5 50.8 49.7
MPJPE 80.7 77.3 78.9 77.7

(e) The interval τ .

Table 2: Training stability analysis on critical hyper-parameters: (a) the learning rate α of lower-level weight probe, (b) the
loss weight µ1 of Lm, (c) the loss weight µ2 of Lmt, (d) the smoothing coeffient δ of the exponential moving average on the
teacher model Tω [13], and (e) the interval τ from the previous image for the motion loss Lm. We report both the MPJPE
and PA-MPJPE on 3DPW [16] using the protocol of # PS. Note that the optimal parameters are in bold font.

Method Protocol PA-MPJPE

SPIN∗ [4] # PS 146.6
SMPLify [1] # PS 106.1
PoseNet3D [15] # PS 63.2
Song et al. [12] # PS 55.9
Ours # PS 49.5

Table 3: Quantitative comparison with skeleton-based mod-
els [1, 15, 12] on 3DPW in terms of PA-MPJPE (# PS).
Note that the baseline model SPIN∗ is trained only on Hu-
man3.6M.

the protocol # PS. The reason for the significant difference
lies in two aspects:

• Choice of SMPL [9] annotation at test time. SPIN
uses the SMPL annotation from the official 3DPW as
ground-truth. Instead, HMMR adopts the fitted SMPL
annotations as ground-truth. Specifically, HMMR uses
a neutral template to fit the official SMPL annotations
by taking the objective that minimizing vertex error be-
tween the fits and the target meshes.

• Choice of the valid test frame. For SPIN, frames in
which less than 6 joints are detected are discarded. For
HMMR, however, frames need to meet two conditions
to be discarded: (1) all detected joints less than 0.1 or
the skeleton height less than 0.5 pixels, and (2) all the
next frames are also invalid.

Shape evaluation. We adopt the Per Vertex Error (PVE)
metric from VIBE [7] to evaluate the shape accuracy of the
reconstructed mesh. We take the mesh provided by 3DPW

Metric SPIN VIBE BOA

PVE (↓) 116.4 113.4 91.2

Table 4: Shape evaluation on 3DPW in terms of PVE (mm).

as ground-truth, and the comparison results is shown in Ta-
ble 4.

Comparison with skeleton-based models. We compare
with models [1, 15, 12] that taking 2D keypoints as in-
put, and report the PA-MPJPE (# PS) in Table 3. Com-
pared with images, 2D keypoints carry more specific and
explicit pose information. As a result, taking 2D keypoint
as input is advantageous to pose-related metrics MPJPE
and PA-MPJPE [2, 11]. However, relative to the baseline
model SPIN∗ which is also only trained on Human3.6M, the
BOA brought more significant improvement than skeleton-
based models. Moreover, they use more training data than
SPIN∗ and ours. Even compared with the best skeleton-
based model (the fourth row), our model still outperforms
6.4mm in terms of PA-MPJPE. This verifies the advantages
of our proposed online adaptation scheme, BOA. Besides,
the proposed BOA is also compatible with skeleton-based
models.

4. Visualization on 3DHP

In Figure 2, we show qualitative results of the BOA on
3DHP. Even 3DHP has significant differences from Hu-
man3.6M [3] in many aspects (e.g. camera parameters, bone
length), our BOA still performs well in both wild and indoor
scenarios. This verifies the advantages of our bilevel online
adaptation framework, which can learn out-of-domain data
well.
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Figure 2: Qualitative results of the BOA on 3DHP. The first and third rows are input sequences. The second and fourth rows
show the results.

5. Learning the Base Model on Human3.6M
We further introduce how to learn a base model Mφ0

on DS . Although DT far sway from training set DS , some
common characteristics is shared, such as body topological
structure, kinematic prior. However, taking images as input,
Mφ0 is prone to over-fit on textures. To prevent the learning
drift conception, we train the base model in a fully super-
vised manner. Given an image y ∈ DS , the base modelM
provides the regression results, including the SMPL param-
eters {β̂, θ̂} and the camera parameters Πψ̂ in a forward
pass. According to the pre-defined mesh-to-skeleton map-
ping in SMPL, we can obtain the estimated 3D keypoints
Ĵ and its 2D projection ĵ = Πψ̂(Ĵ). Then we supervised
Mφ0

as follows:

LS = λ1LJ + λ2Lj + λ3LΘ, (1)

LJ = ||Jy − Ĵy||22, (2)

Lj = ||jy − ĵy||22, (3)

LΘ = ||β − β̂||22 + λ4||θ − θ̂||22 (4)

where {λ1, λ2, λ3, λ4} are loss weights. The model Mφ0

follows the architecture of SPIN et al. [8] and has the same
training setting with them. The only difference is that we
exclude the optimization module from training. We follow
the same training setting with SPIN. By taking in strong
paired 3D supervisions, the base modelMφ0 can get lots of
helpful basic knowledge, e.g. judging body orientation from
images, and 2D-to-3D lifting. This point makes the base
model possible to be quickly adapted to unseen images.
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