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A. Implementation Details

The reflectance and illumination are disentangled by
encoder-decoder networks, while lighting and guiding are
regressed using simple encoder networks. The reflectance
encoder-decoder network uses 4-layer ResBlocks and 2-
layer guiding blocks, and the illumination encoder-decoder
network adopts 4-layer lighting ResBlocks and 2-layer
guiding blocks. The final activation function is tanh for
reflectance, illumination, and guiding, while no activation
but average pooling with fully-connected layer for light-
ing. Reflectance and illumination encoder-decoder outputs
are normalized to [0, 1] to recover H. We train our model
using Adam optimizer [5] with parameters of §; = 0.5,
B2 = 0.999 and learning rate o = 0.0001. We resize input
images as 256 x 256 for training and testing, and our model
produces harmonized images with the same size. Light la-
tent code is set as an §-dimentional vector and inharmony-
free feature maps are 32 x 32 x 256 volume. We empiri-
cally set Arg =01, A7 =0.01, \;g =0.1and \;p =1
in our experiments. Our model does not use the occluded
background information for training and testing.

We report the implementation details of our autoencoder-
based architecture for intrinsic image harmonization in Ta-
bles A (reflectance intrinsic image harmonization), B (illu-
mination intrinsic image harmonization), C (light learning),
and D (inharmony-free learning). We use standard encoder
networks for both light and inharmony-free learning, and
encoder-decoder networks for reflectance and illumination
intrinsic image harmonization. Symbols of the operators are
defined as follows:

e Conv(Cin, Cout, k, S, p): convolution with ¢;, input
channels, c,,; output channels, kernel size k, stride s,
and padding p.
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e Linear(f;,, fout): linear transformation with f;,, input
features and f,,; output features.

e ResBlock(cin, Couts k, s, p): residual block [4] with
¢;in, input channels, c,,; output channels, kernel size &,
stride s, and padding p.

¢ GuidingBlock(c;p, Cout, k, s, p): our guiding block
with ¢;,, input channels, ¢, output channels, kernel
size k, stride s, and padding p.

 LightingResBlock(c;,,, couts k, s, p): our lighting
residual block with c¢;, input channels, c,,; output
channels, kernel size k, stride s, and padding p.

» Upsample(s): nearest-neighbor upsampling with a
scale factor of s.

¢ IN(n): instance normalization [8] with n dimensions.
* LN(n): layer normalization [!] with n dimensions.

e LReLU(«): Leaky ReLU [6] with a negative slope of
a.

B. Patch Covariance

We compute patch covariance for modeling patch rela-
tions by:
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where p € RFWXC: O H and W represent the number
of channels, height and width, respectively; p/9 and p®9
denote the transformed foreground and background feature
maps (from RE>*H*W): and Py € REWXL is the mean,
computed across channel dimension independently for each
spatial location.



Encoder ‘ Output size
Conv(3, 64, 7, 1, 3) + IN(64) + LReLU(0.2) 256
Conv(64, 128, 4, 2, 1) + IN(128) + LReLU(0.2) 128
Conv(128, 256, 4, 2, 1) + IN(256) + LReLU(0.2) 64
Bottleneck ‘ Output size
ResBlock(256, 256, 3, 1, 1) x4 64
GuidingBlock(256, 256, 3, 1, 1) x2 64
Decoder | Output size
Upsample(2) 128
Conv(256, 128, 3, 1, 1) + LN(128) 4+ LReLU(0.2) 128
Upsample(2) 256
Conv(128, 64, 3, 1, 1) + LN(64) + LReLU(0.2) 256
Conv(64, 3,7, 1, 3) + Tanh — output 256

Table A. Network architecture for reflectance intrinsic image har-
monization.

Encoder ‘ Output size
Conv(3, 64, 7, 1, 3) + IN(64) + LReLU(0.2) 256
Conv(64, 128, 4, 2, 1) 4+ IN(128) + LReLU(0.2) 128
Conv(128, 256, 4, 2, 1) + IN(256) + LReLU(0.2) 64
Bottleneck ‘ Output size
LightingResBlock(256, 256, 3, 1, 1) x4 64
GuidingBlock(256, 256, 3, 1, 1) x2 64
Decoder ‘ Output size
Upsample(2) 128
Conv(256, 128, 3, 1, 1) + LN(128) 4+ LReLU(0.2) 128
Upsample(2) 256
Conv(128, 64, 3, 1, 1) + LN(64) + LReLU(0.2) 256
Conv(64, 3, 7, 1, 3) + Tanh — output 256

Table B. Network architecture for illumination intrinsic image har-
monization.

Encoder Output size

Conv(64, 128, 4, 2, 1) + LReLU(0.2) 128
Conv(128, 256, 4, 2, 1) + LReLU(0.2)
AdaptiveAvgPool2d(1)

MLP Output size

\

Conv(3, 64, 7, 1, 3) + LReLU(0.2) 256
\
| 1

Linear(256, 8) — output

Table C. Network architecture for light learning.

Encoder ‘ Output size
Conv(3, 32,7, 1, 3) + LReLU(0.2) 256
Conv(32, 64, 4, 2, 1) + LReLU(0.2) 128
Conv(64, 128, 4, 2, 1) + LReLU(0.2) 64
Conv(128, 256, 4, 2, 1) + LReLU(0.2) 32
Conv(128, 256, 3, 1, 1) + Tanh — output 32

Table D. Network architecture for inharmony-free learning.

C. Evaluation Metrics

In addition to MSE and SSIM [9], we also report fore-
ground MSE (fMSE) and foreground SSIM (fSSIM) to
measure how well the foreground is harmonized. MSE and
SSIM essentially evaluate harmonization performance over
all pixels across the dataset (dataset-level), while fMSE and
fSSIM measure the harmonization over each single image
(with different sizes of foreground) averaging on the dataset
(image-level). We argue that image-level fMSE and fSSIM
are more suitable to evaluate the harmonization generaliza-
tion ability since many pixels (background) are unchanged
and the sizes of foreground are different in terms of each
image. Given the real image H and the harmonized image
H, we provide the details of these four metrics as follows.

C.1. MSE vs. fMSE
We compute MSE by:
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where K is the pixel number of image (% is the pixel index),
N is the image number of dataset (n is the image index),
and 3 means three RGB channels of image.

And we compute our fMSE by:
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where K J(f;) is the foreground pixel number of n-th image,
and M denotes the foreground mask.

Refer to Table 1 in the paper, it is worth mentioning that
our method is superior to DoveNet in fMSE, but inferior to
DoveNet in MSE on Hday2night, mainly because that MSE
evaluates harmonization performance at the dataset level
while fMSE reflects harmonization ability at the image level
which is more valuable and generalized, for instance, one
method may obtain lower MSE yet higher fMSE because
it harmonizes some images with big foreground very better
while harmonizes some images with small foreground very
worse, indicating unstable performance.

C.2. SSIM vs. fSSIM
We compute SSIM by:
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where J is the window number of image (j is the window
index), N is the image number of dataset (n is the image in-
dex), and Ssgv is the structural similarity function referring
to [9].
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where J )(CZ) and Jé;) are the foreground and background
window number of n-th image respectively, M denotes the
foreground mask, and © indicates element-wise product.
Refer to Table 1 in the paper, surprisingly, composite im-
ages have highest SSIM scores representing best structural
similarity to real images, suggesting that, (1) the inharmony
of composite images is not caused by structure or semantics,
so that the illumination may play an important role, and (2)
all listed methods may destroy image structure during har-
monization, among which our method is least destructive
yet makes most harmonious. Noting that, in terms of fS-
SIM, our method performs best against all other methods
as well as composite images, also because that SSIM eval-
uates at dataset level while fSSIM evaluates at image level
(similar to MSE vs. fMSE), thus yielding inconsistent trend
changes due to different size of foreground for each image.

D. Additional Quantitative Results of iHar-
mony4+HVIDIT

We report the quantitative comparison results of image
harmonization models retrained by merging our HVIDIT
into iHarmony4 [2] in Table E.

E. Additional Qualitative Results

We show additional qualitative comparison results of im-
age harmonization in Figures A and B. And we show har-
monized results with normal masks and inverted masks in
Figures C and D. We also show light latent representation
results by changing light latent code in Figure E, and vi-
sual results transferring the light from one source image to
another target image in Figure F.

F. Results on Real Composite Images

We finally show all visual comparison results of differ-
ent methods to harmonize 99 real composite images in Fig-
ures G—Q.

References

[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. Layer normalization. arXiv preprint arXiv:1607.06450,
2016. 1

[2] Wenyan Cong, Jianfu Zhang, Li Niu, Liu Liu, Zhixin Ling,
Weiyuan Li, and Liqing Zhang. DoveNet: Deep image har-
monization via domain verification. In CVPR, pages 8394—
8403, 2020. 3,4

[3] Xiaodong Cun and Chi-Man Pun. Improving the harmony of
the composite image by spatial-separated attention module.
IEEE TIP, 29:4759-4771, 2020. 4

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
pages 770-778, 2016. 1

[5] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In /CLR, 2015. 1

[6] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Recti-
fier nonlinearities improve neural network acoustic models.
In ICMLW, pages 1-6, 2013. 1

[7] Yi-Hsuan Tsai, Xiaohui Shen, Zhe Lin, Kalyan Sunkavalli,
Xin Lu, and Ming-Hsuan Yang. Deep image harmonization.
In CVPR, pages 3789-3797, 2017. 4

[8] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Im-
proved texture networks: Maximizing quality and diversity
in feed-forward stylization and texture synthesis. In CVPR,
pages 6924-6932, 2017. 1

[9] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P
Simoncelli. Image quality assessment: From error visibility
to structural similarity. IEEE TIP, 13(4):600-612, 2004. 2,
3

[10] Chen Wei, Wenjing Wang, Wenhan Yang, and Jiaying Liu.
Deep retinex decomposition for low-light enhancement. In
BMVC, 2018. 4



Ours Ours Ours

Dataset Metric | Composite Retinex-Net [10] DIH [7] S2ZAM [3] DoveNet [2] (base)  (base+lighting) (base+guiding) Ours
PSNR?T 33.94 33.09 33.58 34.92 35.75 36.01 37.08 36.82 36.96

MSE| 69.37 69.11 55.84 37.32 36.05 29.77 23.42 27.92 22.03

HCOCO fMSE] | 996.59 988.08 803.19 568.14 547.78 483.75 420.19 470.37 410.21
SSIMT | 0.9853 0.9544 0.9460 0.9451 0.9550 0.9751 0.9762 0.9756 0.9811

fSSIM1T |  0.8257 0.8249 0.8225 0.8454 0.8482 0.8388 0.8592 0.8402 0.8621

PSNR?T 28.16 27.34 31.53 32.67 33.84 34.16 35.02 34.95 35.06

MSE] | 345.54 337.33 101.04 64.28 57.15 49.82 41.17 46.11 40.15

HAdobeSk | fMSE| | 2051.61 2006.31 605.36 473.09 376.42 346.37 251.16 304.12 248.13
SSIMT | 0.9483 0.8859 0.8721 0.8900 0.8853 0.9354 0.9390 0.9368 0.9362

fSSIM?T | 0.7294 0.7240 0.7766 0.8059 0.8144 0.8071 0.8377 0.8042 0.8384

PSNR?T 28.32 28.03 28.99 30.46 30.54 30.72 31.17 30.89 31.23

MSE| | 264.35 265.63 167.90 116.11 125.74 125.11 100.76 109.02 97.69

HFlickr fMSE] | 1574.37 1565.72 1103.85  757.69 813.34 795.95 708.86 753.19 700.51
SSIMT | 0.9618 0.9299 0.9130 0.9179 0.9281 0.9491 0.9592 0.9507 0.9604

fSSIMT | 0.8031 0.7986 0.7981 0.8242 0.8247 0.8032 0.8287 0.8089 0.8299

PSNR?T 34.01 33.16 33.91 34.66 34.43 34.25 35.05 34.87 35.76

MSE| | 109.65 110.25 75.51 51.11 57.17 90.14 55.58 80.13 51.16

Hday2night | fMSE| | 1409.98 1405.23 1002.55  848.48 1001.27 | 1301.06 841.33 1052.11 776.41
SSIMT | 0.9606 0.8995 0.8862 0.8908 0.8972 0.9293 0.9428 0.9309 0.9382

fSSIMT | 0.6353 0.6321 0.6433 0.6467 0.6414 0.6010 0.6481 0.6053 0.6529

PSNR? 38.53 36.32 36.62 36.24 36.80 40.55 40.31 40.29 41.55

MSE| 53.12 53.01 45.55 45.82 35.36 33.16 22.51 25.57 20.16

HVIDIT fMSE] | 1604.41 1603.21 1207.03 1230.92 1186.19 934.63 861.09 925.01 800.92
SSIMT | 0.9921 0.9321 0.9310 0.9206 0.9585 0.9900 0.9912 0.9908 0.9914

fSSIMT | 0.7612 0.7161 0.7512 0.7401 0.7440 0.7136 0.7635 0.7560 0.7686

PSNR?T 31.92 31.08 32.65 33.86 34.68 35.09 35.97 35.78 35.99

MSE| | 167.39 165.09 80.37 53.88 51.88 46.76 37.17 42.48 35.61

All fMSE] | 1386.12 1381.32 800.73 594.90 541.74 512.05 411.74 470.30 390.03
SSIMT | 0.9723 0.9308 0.9202 0.9248 0.9318 0.9611 0.9640 0.9620 0.9660

fSSIM?T |  0.7904 0.7881 0.8009 0.8242 0.8349 0.8167 0.8532 0.8313 0.8727

Note: we retrain the models on iHarmony4+HVIDIT to obtain the results for comparison.

Table E. Quantitative comparison on iHarmony4+HVIDIT. The 1 indicates the higher the better, and | indicates the lower the better. The
best results are denoted in boldface. We compute fMSE and fSSIM at image level for better harmonization reflection.
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Figure A. Additional qualitative comparison results of image harmonization. Red boxes in composite images mark foreground.
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Figure B. Additional qualitative comparison results of image harmonization. Red boxes in composite images mark foreground.
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Figure C. Additional qualitative comparison results of image harmonization with normal masks and inverted masks. Red boxes in composite
images mark foreground.
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Figure D. Additional qualitative comparison results of image harmonization with normal masks and inverted masks. Red boxes in com-
posite images mark foreground.



Real Light latent representation

Figure E. Additional qualitative light latent representation results by changing light latent code.
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Figure F. Additional qualitative results transferring the light from one source image to another target image.
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Figure G. Visual comparison results on real composite images. Red boxes in composite images mark foreground.
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Figure H. Visual comparison results on real composite images. Red boxes in composite images mark foreground.
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Figure I. Visual comparison results on real composite images. Red boxes in composite images mark foreground.
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Figure J. Visual comparison results on real composite images. Red boxes in composite images mark foreground.



d - ; - : : a\,, .
Composite DIH S2AM DoveNet Ours

Figure K. Visual comparison results on real composite images. Red boxes in composite images mark foreground.
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Figure L. Visual comparison results on real composite images. Red boxes in composite images mark foreground.
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Figure M. Visual comparison results on real composite images. Red boxes in composite images mark foreground.
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Figure N. Visual comparison results on real composite images. Red boxes in composite images mark foreground.
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Figure O. Visual comparison results on real composite images. Red boxes in composite images mark foreground.
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Figure Q. Visual comparison results on real composite images. Red boxes in composite images mark foreground.



