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1. Supplementary Introduction
In this supplementary document, we first provide supple-

mentary method including details of network architecture
and addition schematics of FL-MRCM. Then, we present
additional experimental results including experiments on
different acceleration factors, more qualitative results, and
ablation studies.

2. Supplementary Method
We use a U-Net [4] style encoder-decoder architecture

for the reconstruction networks. Table 1 shows the details of
each block in encoder and decoder in our reconstruction net-
work. Note Conv and ConvTranspose denote the 2D convo-
lution and 2D transposed convolution operator, respectively.
The encoder networks can be described as follows:

ConvBlock(1,32)-AvgPool(2,2)-ConvBlock(32,64)-
AvgPool(2,2)-ConvBlock(64,128)-AvgPool(2,2)-
ConvBlock(128,256)-AvgPool(2,2)-ConvBlock(256,512),

where AvgPool(2,2) represents 2D average pooling with
kernel size of 2 and stride size of 2 and other network mod-
ules are express by (in-channel, out-channel). Then, feature
maps are projected to latent space as the input of domain
identifiers by an adaptive average pooling layer with out-
shape 512× 2× 2. The decoder networks can be expressed
as follows:

Upsample(512,256)-ConvBlock(512,256)-
Upsample(256,128)-ConvBlock(256,128)–
Upsample(128,64)-ConvBlock(128,64)–Upsample(64,32)-
ConvBlock(64,32)-Conv(32,1).

The domain identifier consists of two fully connected layers
as follow:

FC(2048,256)-LeakyRelu(0.2)-FC(256,2),

where LeakyRelu(0.2) represents the LeakyRelu activation
with negative slope of 0.2.

Figure 1 shows a global view of proposed FL-MRCM for
multi-institutional collaborations in MR image reconstruc-
tion task. For the target site, the decoder part (green block)
and the ground truth image are transparent, since they might
be not involved during the training. As discussed in Section
4 of the main manuscript, there is not fully-sampled data for
training in Scenario 1.

3. Additional Experimental Results

The ablation study about the effectiveness of proposed
cross-site modeling is demonstrated by a set of the com-
parisons between FL-MR and FL-MRCM under the set-
ting of federated learning. Furthermore, we also conduct
a detailed ablation study to analyze the effectiveness of
proposed cross-site modeling without federated learning
framework for T1-weighted images. In this case, we obtain
a trained model from one of available sites and evaluate the
its performance on another institution to observe the gain
purely contributed by cross-site modeling in Table 2. We
present the experiment results when the acceleration factor
is set to 8 in Table 4. Similar with results of acceleration
factor of 4 in main manuscript, our proposed FL-MR ex-
hibits better generalization and clearly outperforms other
privacy-preserving alternative strategies. FL-MRCM out-
performs FL-MR in each dataset by addressing the domain
shift issue.

Table 5 is a extended version of Table 2 in the main
manuscript. We additionally compare the performance of

Table 1. Configuration of Blocks in FL-MRCM
Block Layer Kernel size Stride Padding

ConvBlock

Conv 3 1 1
InstanceNorm - - -
LeakyReLu - - -

Conv 3 1 1
InstanceNorm - - -
LeakyReLu - - -

UpSample
ConvTranspose 2 2 0
InstanceNorm - - -
LeakyReLu - - -



Figure 1. The overview of the proposed FL-MRCM framework. Through several rounds of communication between data centers and
server, the collaboratively trained global model parameterized by Θq

G can be obtained in a data privacy-preserving manner.

Figure 2. Bland–Altman plot corresponding to the fastMRI dataset between FL-MRCM and other methods in Scenario 1.

the proposed framework with models pre-trained with data
from a single data center and then fine-tuned with data
from target data center. In this case, we obtain a trained
model from one of the institutions, then we transfer the
pre-trained weights to the target site and fine-tune the pre-
trained model by the training data of the target site, which
will not compromises the data sharing regulations. We de-
note this set of experiments as Transfer in Table 5. The
reported results suggest that pre-trained on a large dataset
(e.g., the F dataset) can improve the performance but the
multi-institutional collaboration is still a better option if
multiple datasets are available.

Figure 3 shows the qualitative performance of different
methods on T1 and T2-weighted images from four datasets

in Scenario 2. It can be observed that the proposed FL-
MRCM method yields reconstructed images with remark-
able visual similarity to the reference images compared to
the other alternatives (see the last column of each sub-figure
in Fig. 3) in four datasets with diverse characteristics.

To investigate the performance improvement of the pro-
posed FL-MRCM, we conduct t-test based on the SSIM
of the reconstructed images between FL-MRCM and other
methods. Averaged p values of each group of experiments
in two scenarios are presented in Table 3. A p value less
than 0.05 is usually considered as statistically significant.
The reported performance of FL-MRCM satisfies this cri-
terion. To further demonstrate the performance of the pro-
posed FL-MRCM, we show an example of Bland–Altman



Table 2. Quantitative ablation study of proposed cross-site model-
ing on T1-weighted images. For experiments with cross-site mod-
eling, the target site is the institution that provides testing data.

Data Centers w/o Cross-site Modeling w/ Cross-site Modeling
(Institutions) SSIM PSNR Average SSIM PSNR Average
Train Test SSIM PSNR SSIM PSNR

B F 0.7694 28.61
0.7222 27.93

0.7987 29.53
0.7399 28.42B H 0.5188 25.07 0.5350 25.08

B I 0.8785 30.10 0.8859 30.65
F B 0.9016 34.65

0.8840 31.44
0.9158 35.13

0.8978 31.79F H 0.8402 28.52 0.8603 28.83
F I 0.9102 31.16 0.9172 31.42
H B 0.6670 29.12

0.7736 30.03
0.7256 31.54

0.8292 31.40H F 0.8571 31.82 0.8938 32.59
H I 0.7968 29.16 0.8681 30.07
I B 0.8795 33.76

0.7831 30.68
0.9310 35.03

0.8522 31.58I F 0.8417 31.18 0.8803 31.81
I H 0.6281 27.09 0.7454 27.89

plot for fastMRI (the largest dataset) in Fig. 2. The y axis
represents the SSIM difference of the reconstructed images
between FL-MRCM and other methods. We can observe
that most points lie in the positive range, which implies that
FL-MRCM exhibits better reconstruction performance on
most subjects.

Table 3. The p values of t-test among different methods in two
scenarios.

Scenario 1 Scenario 2

Method T1 -weighted T2 -weighted Method T1 -weighted T2 -weighted

Cross 4.11 × 10−27 2.76 × 10−07 Single 3.20 × 10−02 7.92 × 10−03

Fused 9.51 × 10−20 1.12 × 10−15 FL-MR 2.20 × 10−02 4.34 × 10−07

FL-MR 5.28 × 10−05 6.47 × 10−03 FL-MRCM - -

FL-MRCM - - - - -

While our proposed method yields better performance,
there are several limitations in our current study. First, ex-
periments are conducted on the same sequences (e.g., T1

and T2) with the Cartesian undersampling. Although T1

and T2 are widely used sequences in clinical practice and
Cartesian undersampling is usually adapted by compressed
sensing, this might limit the applicability of our approach.
The proposed method is inherently compatible with differ-
ent kinds of sequences and undersampling. We will explore
this direction in our future work. Second, experiments are
based on simulated acquisition (starting from fully-sampled
k-space and simulating acceleration). Further verification
of accelerated acquisition on actual scanners will make this
study more persuasive.
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Figure 3. Qualitative results of different methods that correspond to Scenario 2. For results of T1-weighted images on, (a) fastMRI [2], (b)
HPKS, (c) IXI [1], (d) BraTS [3]. For results of T2-weighted images on, (e) fastMRI [2], (f) HPKS, (g) IXI [1], (h) BraTS [3]. The second
row of each sub-figure shows the absolute image difference between reconstructed images and the ground truth.



Table 4. Supplementary quantitative comparisons with model trained by different strategies in Scenario 1. Here, acceleration factor is set
to 8.

Methods

Data Centers
T1-weighted T2-weighted(Institutions)

Train Test SSIM PSNR Average SSIM PSNR Average
SSIM PSNR SSIM PSNR

Cross

F B 0.8920 30.62

0.7583 25.72

0.8716 29.05

0.7583 25.72

H B 0.7242 27.88 0.7319 27.18
I B 0.8845 29.75 0.8089 27.30

B F 0.6897 23.97 0.7162 23.76
H F 0.8258 28.17 0.7948 25.42
I F 0.7767 26.38 0.8057 26.37

B H 0.3890 21.00 0.5280 22.84
F H 0.7633 24.70 0.7966 26.33
I H 0.5091 22.64 0.7837 26.01

B I 0.8122 26.23 0.6802 23.75
F I 0.8548 27.60 0.8155 25.64
H I 0.8029 26.66 0.7668 25.01

Fused

F, H, I B 0.8631 30.71

0.7701 27.41

0.8323 28.88

0.7966 26.76B, H, I F 0.8000 27.51 0.8214 26.25
B, F, I H 0.5607 23.74 0.7486 26.35
B, F, H I 0.8564 27.68 0.7840 25.58

FL-MR

F, H, I B 0.9005 31.22

0.8339 28.08

0.8794 29.47

0.8380 27.48B, H, I F 0.8598 29.14 0.8517 26.95
B, F, I H 0.7178 24.15 0.7965 27.13
B, F, H I 0.8574 27.80 0.8243 26.37

FL-MRCM

F, H, I B 0.9131 31.65

0.8473 28.28

0.8868 29.51

0.8479 27.57B, H, I F 0.8697 28.75 0.8579 27.15
B, F, I H 0.7440 24.72 0.8145 27.18
B, F, H I 0.8625 28.01 0.8325 26.43
F, H, I B 0.9181 31.70

0.8545 28.45

0.8866 29.30

0.8513 27.45Mix B, H, I F 0.8690 29.33 0.8578 26.84
(Upper Bound) B, F, I H 0.7726 24.94 0.8265 27.25

B, F, H I 0.8581 27.85 0.8345 26.39

Table 5. Supplementary quantitative comparisons with models trained by different strategies in Scenario 2.

Methods

Data Centers
T1-weighted T2-weighted(Institutions)

Tain Test SSIM PSRN Average SSIM PSNR Average
SSIM PSNR SSIM PSNR

Single

B B 0.9660 37.30

0.9351 33.81

0.9558 34.90

0.9278 32.35F F 0.9494 35.45 0.9404 32.43
H H 0.8855 29.67 0.9001 31.29
I I 0.9396 32.80 0.9151 30.79

Transfer

B, F F 0.9453 34.97

0.9355 33.72

0.9353 32.03

0.9310 32.41

B, H H 0.8861 29.76 0.9007 31.16
B, I I 0.9404 32.79 0.9119 30.65
F, B B 0.9669 37.33 0.9635 35.35
F, H H 0.8948 30.05 0.9153 32.10
F, I I 0.9408 32.85 0.9226 31.26

H, B B 0.9638 36.59 0.9566 34.47
H, F F 0.9445 34.99 0.9355 31.94
H, I I 0.9385 32.60 0.9162 30.63
I, B B 0.9663 37.21 0.9602 34.94
I, F F 0.9502 35.63 0.9376 32.38
I, H H 0.8886 29.88 0.9171 32.01

FL-MR B, F, H, I

B 0.9662 37.37

0.9294 33.92

0.9482 35.34

0.9238 32.64F 0.9404 35.25 0.9306 32.19
H 0.8732 30.03 0.9021 31.74
I 0.9379 33.03 0.9145 31.29

FL-MRCM B, F, H, I

B 0.9676 37.57

0.9381 34.14

0.9630 35.85

0.9373 33.13F 0.9475 35.57 0.9385 32.69
H 0.8940 30.27 0.9232 32.44
I 0.9432 33.13 0.9244 31.54

B, F, H, I

B 0.9698 37.62

0.9440 34.35

0.9655 35.83

0.9398 33.14Mix F 0.9558 36.15 0.9435 32.82
(Upper H 0.9047 30.57 0.9236 32.47
Bound) I 0.9454 33.08 0.9266 31.44


