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1. Supplementary Introduction

In this supplementary document, we first provide supple-
mentary method including details of network architecture
and addition schematics of FL-MRCM. Then, we present
additional experimental results including experiments on
different acceleration factors, more qualitative results, and
ablation studies.

2. Supplementary Method

We use a U-Net [4] style encoder-decoder architecture
for the reconstruction networks. Table 1 shows the details of
each block in encoder and decoder in our reconstruction net-
work. Note Conv and ConvTranspose denote the 2D convo-
lution and 2D transposed convolution operator, respectively.
The encoder networks can be described as follows:

ConvBlock(1,32)-AvgPool(2,2)-ConvBlock(32,64)-
AvgPool(2,2)-ConvBlock(64,128)-AvgPool(2,2)-
ConvBlock(128,256)-AvgPool(2,2)-ConvBlock(256,512),

where AvgPool(2,2) represents 2D average pooling with
kernel size of 2 and stride size of 2 and other network mod-
ules are express by (in-channel, out-channel). Then, feature
maps are projected to latent space as the input of domain
identifiers by an adaptive average pooling layer with out-
shape 512 x 2 x 2. The decoder networks can be expressed
as follows:

Upsample(512,256)-ConvBlock(512,256)-
Upsample(256,128)-ConvBlock(256,128)—
Upsample(128,64)-ConvBlock(128,64)-Upsample(64,32)-
ConvBlock(64,32)-Conv(32,1).

The domain identifier consists of two fully connected layers
as follow:

FC(2048,256)-LeakyRelu(0.2)-FC(256,2),

where LeakyRelu(0.2) represents the LeakyRelu activation
with negative slope of 0.2.

Figure 1 shows a global view of proposed FL-MRCM for
multi-institutional collaborations in MR image reconstruc-
tion task. For the target site, the decoder part (green block)
and the ground truth image are transparent, since they might
be not involved during the training. As discussed in Section
4 of the main manuscript, there is not fully-sampled data for
training in Scenario 1.

3. Additional Experimental Results

The ablation study about the effectiveness of proposed
cross-site modeling is demonstrated by a set of the com-
parisons between FL-MR and FL-MRCM under the set-
ting of federated learning. Furthermore, we also conduct
a detailed ablation study to analyze the effectiveness of
proposed cross-site modeling without federated learning
framework for T7-weighted images. In this case, we obtain
a trained model from one of available sites and evaluate the
its performance on another institution to observe the gain
purely contributed by cross-site modeling in Table 2. We
present the experiment results when the acceleration factor
is set to 8 in Table 4. Similar with results of acceleration
factor of 4 in main manuscript, our proposed FL-MR ex-
hibits better generalization and clearly outperforms other
privacy-preserving alternative strategies. FL-MRCM out-
performs FL-MR in each dataset by addressing the domain
shift issue.

Table 5 is a extended version of Table 2 in the main
manuscript. We additionally compare the performance of

Table 1. Configuration of Blocks in FL-MRCM

Block Layer Kernel size | Stride | Padding

Conv 3 1 1

InstanceNorm - - -

LeakyReLu - - -

ConvBlock Conv 3 i i

InstanceNorm - - -

LeakyReLu - - -

ConvTranspose 2 2 0

UpSample InstanceNorm - - -
LeakyReLu
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Figure 1. The overview of the proposed FL-MRCM framework. Through several rounds of communication between data centers and
server, the collaboratively trained global model parameterized by ©F can be obtained in a data privacy-preserving manner.
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Figure 2. Bland—Altman plot corresponding to the fastMRI dataset between FL-MRCM and other methods in Scenario 1.

the proposed framework with models pre-trained with data in Scenario 2. It can be observed that the proposed FL-
from a single data center and then fine-tuned with data MRCM method yields reconstructed images with remark-
from target data center. In this case, we obtain a trained able visual similarity to the reference images compared to
model from one of the institutions, then we transfer the the other alternatives (see the last column of each sub-figure
pre-trained weights to the target site and fine-tune the pre- in Fig. 3) in four datasets with diverse characteristics.
trained model by the training data of the target site, which To investigate the performance improvement of the pro-
will not compromises the data sharing regulations. We de- posed FL-MRCM, we conduct t-test based on the SSIM
note this set of experiments as Transfer in Table 5. The of the reconstructed images between FL-MRCM and other
reported results suggest that pre-trained on a large dataset methods. Averaged p values of each group of experiments
(e.g., the F dataset) can improve the performance but the in two scenarios are presented in Table 3. A p value less
multi-institutional collaboration is still a better option if than 0.05 is usually considered as statistically significant.
multiple datasets are available. The reported performance of FL-MRCM satisfies this cri-
Figure 3 shows the qualitative performance of different terion. To further demonstrate the performance of the pro-

methods on 7} and T5-weighted images from four datasets posed FL-MRCM, we show an example of Bland—Altman



Table 2. Quantitative ablation study of proposed cross-site model-
ing on T -weighted images. For experiments with cross-site mod-
eling, the target site is the institution that provides testing data.

Data Centers w/o Cross-site Modeling w/ Cross-site Modeling
(Institutions) Average Average
Train | Test SSIM | PSNR SSIM | PSNR SSIM | PSNR SSIM | PSNR
B F [0.7694 | 28.61 0.7987 | 29.53

B H [0.5188]| 25.07 | 0.7222 | 27.93 | 0.5350 | 25.08 | 0.7399 | 28.42
B 1 |0.8785| 30.10 0.8859 | 30.65

F B [0.9016 | 34.65 0.9158 | 35.13

F H ]0.8402 | 28.52 | 0.8840 | 31.44 | 0.8603 | 28.83 | 0.8978 | 31.79
F 1 ]0.9102| 31.16 09172 | 31.42

H B [0.6670 | 29.12 0.7256 | 31.54

H F [0.8571| 31.82 | 0.7736 | 30.03 | 0.8938 | 32.59 | 0.8292 | 31.40
H I ]0.7968 | 29.16 0.8681 | 30.07

I B |0.8795] 33.76 0.9310 | 35.03

I F |0.8417 | 31.18 | 0.7831 | 30.68 | 0.8803 | 31.81 | 0.8522 | 31.58
1 H ]0.6281 | 27.09 0.7454 | 27.89

plot for fastMRI (the largest dataset) in Fig. 2. The y axis
represents the SSIM difference of the reconstructed images
between FL-MRCM and other methods. We can observe
that most points lie in the positive range, which implies that
FL-MRCM exhibits better reconstruction performance on
most subjects.

Table 3. The p values of t-test among different methods in two
scenarios.

Scenario 1 Scenario 2
Method T -weighted Ty -weighted Method T -weighted T -weighted
Cross |4.11 x 10~27[2.76 x 10— 07 Single  [3.20 x 10— 02 [7.92 x 1003

Fused |9.51 x 10720 [1.12 x 10~ 12| | FL-MR |2.20 x 10~92[4.34 x 10—07
FL-MR |[5.28 x 1079 [6.47 x 10~ 93| [FL-MRCM
FL-MRCM

While our proposed method yields better performance,
there are several limitations in our current study. First, ex-
periments are conducted on the same sequences (e.g., T
and T5) with the Cartesian undersampling. Although T}
and 75 are widely used sequences in clinical practice and
Cartesian undersampling is usually adapted by compressed
sensing, this might limit the applicability of our approach.
The proposed method is inherently compatible with differ-
ent kinds of sequences and undersampling. We will explore
this direction in our future work. Second, experiments are
based on simulated acquisition (starting from fully-sampled
k-space and simulating acceleration). Further verification
of accelerated acquisition on actual scanners will make this
study more persuasive.
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Figure 3. Qualitative results of different methods that correspond to Scenario 2. For results of 7% -weighted images on, (a) fastMRI [2], (b)
HPKS, (c) IXI [1], (d) BraTS [3]. For results of 75-weighted images on, (e) fastMRI [2], (f) HPKS, (g) IXI [1], (h) BraTS [3]. The second
row of each sub-figure shows the absolute image difference between reconstructed images and the ground truth.



Table 4. Supplementary quantitative comparisons with model trained by different strategies in Scenario 1. Here, acceleration factor is set

to 8.
Data Centers . .
(Institutions) T -weighted T>-weighted
Methods Average Average
Train | Test | SSIM | PSNR SSIM | PSNR SSIM | PSNR SSIM T PSNR
F B [0.8920 | 30.62 0.8716 | 29.05
H B |0.7242 | 27.88 0.7319 | 27.18
I B |0.8845 | 29.75 0.8089 | 27.30
B F |0.6897 | 23.97 0.7162 | 23.76
H F |0.8258 | 28.17 0.7948 | 25.42
I F | 0.7767 | 26.38 0.8057 | 26.37
Cross 0.7583 | 25.72 0.7583 | 25.72
B H |0.3890 | 21.00 0.5280 | 22.84
F H |0.7633 | 24.70 0.7966 | 26.33
1 H |0.5091 | 22.64 0.7837 | 26.01
B I ]08122 ] 26.23 0.6802 | 23.75
F I |0.8548 | 27.60 0.8155 | 25.64
H I |0.8029 | 26.66 0.7668 | 25.01
FH,1| B [0.8631 | 30.71 0.8323 | 28.88
B,H,I| F |0.8000 | 27.51 0.8214 | 26.25
Fused B.EI| H |05607 | 23.74 0.7701 | 27.41 07486 | 26.35 0.7966 | 26.76
B,EH| I |0.8564 | 27.68 0.7840 | 25.58
FH, 1 B | 0.9005 | 31.22 0.8794 | 29.47
B,H,I| F |0.8598 | 29.14 0.8517 | 26.95
FL-MR B.EI| H | 07178 | 2415 0.8339 | 28.08 07965 | 27.13 0.8380 | 27.48
B,EH| I |0.8574| 27.80 0.8243 | 26.37
FH,1| B [0.9131 | 31.65 0.8868 | 29.51
B,H,1| F |0.8697 | 28.75 0.8579 | 27.15
FL-MRCM B.EI| H |07440 | 2472 0.8473 | 28.28 08145 | 2718 0.8479 | 27.57
B,EH| I |0.8625]| 28.01 0.8325 | 26.43
FH, 1| B [0.9181 | 31.70 0.8866 | 29.30
Mix B,H,1| F |0.8690 | 29.33 0.8578 | 26.84
(Upper Bound) | B,E T | H | 07726 | 24.04 | 08545 | 2845 | g 0r65 | 2705 | 08513 | 2745
B,EH| I |0.8581 | 27.85 0.8345 | 26.39

Table 5. Supplementary quantitative comparisons with models trained by different strategies in Scenario 2.

Data Centers
(Institutions)

T -weighted

T>-weighted

Methods Average Average
Tain Test | SSIM | PSRN SSIM TPSNR SSIM | PSNR SSIM [PSNR
B B ]0.9660 | 37.30 0.9558 | 34.90
. F F [0.9494 | 3545 0.9404 | 32.43
Single H H | 08855 | 29.67 0.9351 | 33.81 0.9001 | 31.29 0.9278 | 32.35
1 I [0.9396 | 32.80 0.9151 | 30.79
B,F F [0.9453 | 34.97 0.9353 | 32.03
B,H H |[0.8861 | 29.76 0.9007 | 31.16
B, 1 I ]0.9404 | 32.79 0.9119 | 30.65
EB B [0.9669 | 37.33 0.9635 | 35.35
EH H |0.8948 | 30.05 0.9153 | 32.10
F1 1 ]0.9408 | 32.85 0.9226 | 31.26
Transfer oB B 109633 13659 0.9355 | 33.72 0.9566 [ 3447 0.9310 | 32.41
H,F F 10.9445 | 34.99 0.9355 | 31.94
H, I I ]0.9385]| 32.60 0.9162 | 30.63
LB B [0.9663 | 37.21 0.9602 | 34.94
LF F |0.9502 | 35.63 0.9376 | 32.38
LH H |0.8886 | 29.88 0.9171 | 32.01
B |0.9662 | 37.37 0.9482 | 35.34
F 10.9404 | 35.25 0.9306 | 32.19
FL-MR |B,EH,I H 10873213003 0.9294 | 33.92 09021 | 31.74 0.9238 | 32.64
I ]0.9379 ] 33.03 0.9145 | 31.29
B [0.9676 | 37.57 0.9630 | 35.85
F |0.9475 | 35.57 0.9385 | 32.69
FL-MRCM | B,F H, 1 H |08940 | 3027 0.9381 | 34.14 09232 | 32.44 0.9373 | 33.13
I 109432 33.13 0.9244 | 31.54
B [0.9698 | 37.62 0.9655 | 35.83
Mix F |0.9558 | 36.15 0.9435 | 32.82
Wpper | B EHET 1 | 00047 | 30.57 | 094401 3435 | 5 9936 | 30.47 | 0-9398 | 33.14
Bound) I [0.9454 | 33.08 0.9266 | 31.44




