
Supplementary - Human POSEitioning System (HPS): 3D Human Pose
Estimation and Self-localization in Large Scenes from Body-Mounted Sensors

Vladimir Guzov * 1,2 Aymen Mir * 1,2 Torsten Sattler 3 Gerard Pons-Moll1,2

1University of Tübingen, Germany, 2Max Planck Institute for Informatics, Germany
3CIIRC, Czech Technical University in Prague, Czech Republic

{vguzov, amir, gpons}@mpi-inf.mpg.de torsten.sattler@cvut.cz

Abstract

In this supplementary document, we first (Sec. 1) pro-
vide more details about our method and recording setup. In
Sec. 2, we provide implementation details. In Sec. 3, we
provide more details about our experimental setup.

1. Method
1.1. 3D Scene Reconstruction and RGB image

Database

To obtain a representation of the 3D scene, we use a stan-
dard commercial solution to obtain a very dense scene point
cloud: NavVis M6 [2] mobile capture system. It makes use
of 4 LiDAR sensors and 6 RGB cameras. The scene is re-
constructed from the LiDAR data and RGB images using a
proprietary algorithm. The algorithm, in the process, also
provides the extrinsic and intrinsic parameters for all the
RGB images. It took six hours to scan all the 8 scenes of
the dataset.

Potentionally, other SfM or MVS methods using cheaper
sensors are also an option - the exact type of the 3D scan-
ning method is unimportant as long as it registers captured
RGB images within the scene.

1.2. Camera Localization

To obtain 2D-3D correspondences, for each image in
the dataset we produced a rendering of the scene point-
cloud using known extrinsic and intrinsic camera parame-
ters (Fig. 1). For rendering, we use the surface splatting
technique [17] with fixed splat size. Together with the color
rendering we produce a point mapping of the image. The
resolution of the map is the same as the resolution of the
color image. Each pixel of this map contains the index of
the point in the pointcloud which is visible in that pixel. As
NavVis scanners use fisheye cameras, photos obtained from

* Joint first authors with equal contribution.

Figure 1. Comparison of a real image from a database and a result
of our rendering

them are heavily distorted. This affects keypoint detection
performance. To alleviate this, we undistort both camera
images and point mappings by generating a mapping be-
tween our fisheye camera image plane and a fixed perspec-
tive camera plane. Undistorted images are run through the
SuperPoint [7] keypoint detector. In the end, each keypoint
is mapped to the position of the 3D point on the scan ac-
cording to the generated point mapping.

1.3. IMU and head-mounted camera setup

For the head-mounted camera, we use a GoPro cam-
era. We ensure that it remains tightly attached at the fore-
head throughout recordings. For IMUs, we use Xsens
Awinda [12] system consisting of 17 units attached at the
body. IMUs provide the orientation and acceleration in the
local coordinate frame of the sensor which is then used to
estimate the pose of the person.

1.4. IMU-Camera synchronization

To synchronize IMU and camera data, we ask each sub-
ject to clap at the beginning of recordings. We detect

Figure 2. Measured time drift between camera and IMU clap de-
tections after synchronization with the first clap.

Figure 3. We detect sitting by measuring the distance between a
person root joint and a pre-defined vertex on the heel. If dsit <
0.66dstand and the frame velocity is less than some threshold, then
we force the hips to be in contact with the scene.

these claps in both modalities to obtain synchronized start-
ing frames. To check for time drift between the two data
streams, we perform the following experiment: we made a
special 1 hour long recording with a subject clapping every
5 minutes. We synchronize our system with the first clap
and measure the difference in time we get for each consec-
utive clap after that. We noticed a small accumulation of
drift (Fig. 2) – around 87 ms per hour. We take this into
consideration while performing long recordings.

1.5. Body Part Vertices

We manually define vertices corresponding to the heels
and toes of the two feet and also hips (for our modified al-
gorithm in Sec. 1.6) in Blender [5] to enforce contact con-
straints. These vertices are shown in Fig. 4 and Fig. 5

1.6. Modified algorithm

To deal with with persistent camera localization outliers
(outdoor scenes, indoor scenes with repetitive patterns) we

Figure 4. Manually defined feet vertices.

Figure 5. Manually defined back vertices.

implemented a modified version of our algorithm. This al-
gorithm differs from the one described in the main paper
in the minimization objective and initialization algorithm.
Notation remains the same as in the main paper.

Minimization objective is formulated as follows:

E(θ1:T , t1:T) = wiEint + wsEscene + wsmEsm (1)

We optimize with respect to pose θ1:T and translation t1:T
parameters, as in the main paper. We will now explain each
of the terms in more detail.

Scene Contact Term Escene: While IMUs can detect foot
contacts, our subjects often sit down on flat surfaces in the

scene. To detect sitting motion, we develop a heuristic that
involves IMU velocities and pose. First we manually define
a vertex α on the heel of the left foot. To detect frames with
hip contacts, we first compute the dsit - distance between
the foot vertex and the root vertex in a particular frame and
dstand - the distance between the foot vertex and the root
vertex when the person is in T pose. If dsit < 0.66dstand,
we assume that the hips in that frame should be in contact
with the scene. See Fig. 3.

Let dS(θ, t) = ||M(θ, t)α − t||2. If dS(θIj , t
I
j) <

δ1d
S(0, tIj) and ||tIj − tIj−1|| < δ2, we assume that the hips

are in contact with the scene at frame j. We set δ1 = 0.66
and δ2 = 0.001

When the IMUs detect a foot contact or our heuristic de-
tects a hip contact, we force that body part to be in contact
with the ground by using an energy term consisting of two
subterms Escene = wcEcontact+wvEslide. Mathematically
the two subterms are almost the same as eq. 5 and eq. 6 in
the paper:

Let Bk with k ∈ [1, 2, 3, 4, 5] denote 5 sets of manually
defined vertex indices in the SMPL corresponding to the toe
and heel regions for the left and right foot (Fig. 4) and the
hip (Fig. 5). We define the following contact term, which
snaps the foot or the hip vertices to the closest scene vertices

Econtact =
1

5T

T∑
j=1

5∑
k=1

∑
n∈Bk

1

|Bk|
ckj ||Mn(θj , tj)− v(n)‖2 ,

(2)
Similarly to our main algorithm, to prevent the feet and hips
from sliding when in contact with the scene, we constrain
the distance between foot or hip parts in contact with the
scene in two successive frames to be zero

Eslide =
1

5(T − 1)

T−1∑
j=1

5∑
k=1

∑
n∈Bk

1

|Bk|
ckj c

k
j+1||Mn(θj , tj)−

Mn(θj+1, tj+1)||2 . (3)

Smoothness Term Esm: We impose smoothness con-
straints on global translation, and global orientation, but not
the head orientation:

Esm = wTET + wGEG, (4)

where the translation term equals:

ET =
1

T − 1

T−1∑
j=1

max(||(tj−tj+1)||2−||(tIj−tIj+1)||2, 0) .

(5)

EG =
1

T − 1

T−1∑
j=1

||(log((RG(θj))>RG(θj+1)))
∨||2 (6)

The function RG is the same as described in the main
paper.

Interpenetration Term Eint: We also add a robust inter-
penetration term. We force points inside SMPL to be in
the space unoccupied by the scene. We first define an oc-
cupancy field of the scene by voxelizing the scene point-
cloud. By trilinearly sampling the occupancy field, we de-
fine a function S : R3 7→ [0, 1] that maps every point in
space to an occupancy value. To obtain points inside the
mesh, we project face centroids inside the mesh using the
face normals. We define :

N(f,θ, t) =

(M(θ, t)f1 −M(θ, t)f2)× (M(θ, t)f3 −M(θ, t)f2)

||M(θ, t)f1 −M(θ, t)f2)× (M(θ, t)f3 −M(θ, t)f2)||2

P (f,θ, t) =

∑3
k=1M(θ, t)fk

3
− πN(f,θ, t)

where f is a face in SMPL defined by three vertex indices
f1, f2, f3 and π is a hyperparameter that controls the depth
of projection (selected randomly from 0 to 0.1 for each
face). The interpenetration loss is defined as

Eint =
1

T |F|

T∑
j=1

∑
f∈F

(S(P (f,θj , tj)) (7)

where F is the set of SMPL model faces.

Initialization: To initialize translation parameters tj we
use filtered camera localization estimates tFj obtained from
the filtering algorithm Alg. 1. This algorithm is specifically
designed to deal with the frequent camera localization out-
liers: we use IMU location estimates to identify erroneous
camera localizations and using correct camera localizations,
we orient IMU trajectories to match the person’s overall
trajectory and interpolate between the filtered frames using
these corrected IMU trajectories.

For pose initialization we use the same method as in our
main paper (see eq. 11).

2. Implementation
2.1. Joint Optimization

In each iteration of our optimization algorithm, we opti-
mize for 100 frames in a single batch. To ensure a smooth
transition between results from adjacent batches, we force
the translation and global orientation of the first frame in a
batch to be the same as the corresponding parameters of the
last frame in the previous batch. We implement our method
in Pytorch [11]. Specifically we use the Adam optimizer [9]
and optimize each batch of frames with 100 to 2000 gradi-
ent steps. Using an Nvidia Volta V100 GPU, one gradient
step takes about a quarter of a second.

Algorithm 1: Filtering Algorithm

Input: η, ε, IMU positions: tI1:N , Camera
localizations: tC1:N , a function contiguous
that returns an array of values - (start, end)
of contiguous blocks in an array of indices

Output: Filtered positions: tF1:N
Init: vel max =∞, tF1:N = tC1:N , invalids = []
while vel max > ε do

for j in 1 . . .N do
vFj = ||tFj+1 − tFj ||2, vIj = ||tIj+1 − tIj ||2
if vFj > ηvIj then

invalids = invalids + [j]

for (start, end) in contiguous(invalids) do
vta =

vF
end+1−v

F
start−1

||vF
end+1−v

F
start−1||2

,

vin =
vI
end+1−v

I
start−1

||vI
end+1−v

I
start−1||2

for k in start . . . end do
tFk = tFk−1+exp(vin × vta

∧
)(tIk− tIk−1)

vF1:N−1 = ||tF2:N − tF1:N−1||2
vel max = max(vF1:N−1)

2.2. Camera self-localization pipeline

For feature extraction and matching, we use Super-
Point [7] and SuperGlue [13] PyTorch implementation pre-
trained on MegaDepth [10] and ScanNet [6] datasets. We
detect 4096 keypoints at max for each image and perform
40 sinkhorn algorithm iterations at matching stage. For
database prefiltering we use NetVLAD PyTorch implemen-
tation pretrained on Pittsburgh 250k dataset [16]. We se-
lect 40 most similar database images based on the cosine
distance between query and database NetVLAD descriptor.
We use COLMAP [14, 15] software to minimize the repro-
jection error of the matched keypoints. Overall, the pipeline
takes around 3s to localize a frame at 1920×1080 resolution
using Nvidia Q8000 GPU.

2.3. Camera calibration

To retrieve intrinsic parameters of the head-mounted
camera, we take several photos of a checkerboard pattern
and use OpenCV [4] camera calibration tools to get the pa-
rameters. In our camera self-localization pipeline, we use
an OpenCV camera model with 2 radial and 2 tangential
distortion coefficients.

3. Experiments
To obtain the ground truth data for our comparisons we

use a system of 3 Azure Kinect RGB-D sensors [1] in a
time-synchronized mode. The system is set up in a way that
it covers all regions of the body and provides a 360◦ view

B) Raw point cloudA) Input from Kinects

C) Filtered point cloud

Figure 6. Setup of our ground truth recording system. A) Sam-
ple of images captured by Kinects. B) Raw point cloud obtained
by unprojecting the depth (RGB colors mark points from 1st, 2nd
and 3rd Kinects respectively. C) Point cloud after applying back-
ground removal procedure.

of the subject every 1/30 of a second (Fig. 6).
To obtain the RGB-D videos from Kinects we use a cus-

tom recorder written in C++ running on a separate com-
puter for each Kinect. To ensure time synchronization,
Kinects are connected sequentially through the special time
synchronization input and recorders are controlled over the
wireless network. The video is recorded at 30 FPS with a
color resolution of 1920 × 1080 pixels and a depth resolu-
tion of 640× 576 pixels.

Ground-truth Point clouds: To register the ground
truth point cloud to the static 3D prescanned scene, we use
the following 3-stage method:

• Visual localization: We obtain an approximate camera
position for each depth-camera using the same visual
localization method described in the paper.

• Depthmap-to-scene ICP: We align the partial point
cloud of each depth camera with the scene using
ICP [3]. ICP is initialized using the camera parame-
ters from the previous stage.

• Manual correction: Some results can still be erroneous
due to depthmap artifacts or due to incorrect ICP ini-
tialization. These results are corrected manually. As a
final step, we run ICP again.

Video recording preparation. Prior to the actual
ground-truth video recording, we record a short video of
the scene from all kinects with no one present in the field
of view. Frames are averaged and average depth is used in
2 ways: in depthmap-to-scene ICP alignment and for the
background subtraction.

Background subtraction. To compute our metrics us-
ing obtained point clouds we need to make sure that we get

only points corresponding to a subject. To achieve this, we
first subtract the background from depth videos by ignor-
ing all pixels with depth more or equal to the prerecorded
empty scene depthmap. After that, we unproject the points
from all 3 Kinects to the 3D space and run DBSCAN [8]
clustering with the maximum distance between clusters of
0.12 meters. Finally, we remove all points that are not in the
biggest cluster. Example of the result is shown in Fig. 6.

References
[1] Microsoft Azure Kinect, accessed November 15, 2020.

https : / / en . wikipedia . org / wiki / Azure _
Kinect. 4

[2] Navvis M16, accessed November 15, 2020. https://
www.navvis.com/m6. 1

[3] Paul J Besl and Neil D McKay. Method for registration of
3-d shapes. In Sensor fusion IV: control paradigms and data
structures, volume 1611, pages 586–606. International Soci-
ety for Optics and Photonics, 1992. 4

[4] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of
Software Tools, 2000. 4

[5] Blender Online Community. Blender - a 3D modelling and
rendering package. Blender Foundation, Stichting Blender
Foundation, Amsterdam, 2018. 2

[6] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Hal-
ber, Thomas Funkhouser, and Matthias Nießner. Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In
Proc. Computer Vision and Pattern Recognition (CVPR),
IEEE, 2017. 4

[7] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabi-
novich. Superpoint: Self-supervised interest point detection
and description. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops, pages
224–236, 2018. 1, 4

[8] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu,
et al. A density-based algorithm for discovering clusters in
large spatial databases with noise. 5

[9] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In Yoshua Bengio and Yann LeCun,
editors, 3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015. 3

[10] Zhengqi Li and Noah Snavely. Megadepth: Learning single-
view depth prediction from internet photos. In Computer
Vision and Pattern Recognition (CVPR), 2018. 4

[11] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, Luca Antiga, Alban Desmai-
son, Andreas Kopf, Edward Yang, Zachary DeVito, Mar-
tin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch:
An imperative style, high-performance deep learning library.
In Advances in Neural Information Processing Systems 32,
pages 8024–8035. 2019. 3

[12] Monique Paulich, Martin Schepers, Nina Rudigkeit, and G.
Bellusci. Xsens MTw Awinda: Miniature Wireless Inertial-

Magnetic Motion Tracker for Highly Accurate 3D Kinematic
Applications, 05 2018. 1

[13] Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz,
and Andrew Rabinovich. SuperGlue: Learning Feature
Matching with Graph Neural Networks. In CVPR, 2020. 4

[14] Johannes Lutz Schönberger and Jan-Michael Frahm.
Structure-from-motion revisited. In Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2016. 4

[15] Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys,
and Jan-Michael Frahm. Pixelwise View Selection for Un-
structured Multi-View Stereo. In European Conference on
Computer Vision (ECCV), 2016. 4

[16] A. Torii, J. Sivic, M. Okutomi, and T. Pajdla. Visual place
recognition with repetitive structures. 2015. 4

[17] Matthias Zwicker, Hanspeter Pfister, Jeroen Van Baar, and
Markus Gross. Surface splatting. In Proceedings of the
28th annual conference on Computer graphics and interac-
tive techniques, pages 371–378, 2001. 1

https://en.wikipedia.org/wiki/Azure_Kinect
https://en.wikipedia.org/wiki/Azure_Kinect
https://www.navvis.com/m6
https://www.navvis.com/m6

