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1. Experiments on video classification

Although our work is mainly focused on stream process-
ing, i.e. video tasks where a spatially dense prediction is re-
quired for every frame, our Skip-Conv model can in princi-
ple enable improvement in efficiency of classification mod-
els. We hereby conduct a preliminary experiment with
video classification on human action dataset [2], and con-
sider the split-1 using RGB modality. We report Top-1 ac-
curacy for center-crop inference. As a backbone model, we
rely on Temporal Segment Networks (TSN) [6], based on
a ResNet-101. We study the performance of Skip-Conv in
two inference setup: i. TSN-25, where inference is car-
ried out over 25 frames per clip (sampled uniformly from
the whole video as in [6]). ii. TSN-6, where inference is
carried out over 6 frames per clip, so there are much less
redundancies between frames.

As reported in Tab. 1, Skip-Conv reduces the computation
cost with a minor accuracy drop. The computation gain
is higher for the high frame-rate model (TSN-25) as there
are more redundancies between video frames. For the low
frame-rate model (TSN-6), the compute is reduced from
46.80 to 35.83 GMAC:s even though the frame redundancies
and residual sparsities are fairly low because of the coarse
frame sampling.

Finally, we remark that many state-of-the-art video classi-
fication architectures rely on 3D backbones [1, 3, 4]. Al-
though the focus of this paper has been on 2D Skip-Convs,
Eq. 1 and 2 in the main paper can be extended to the case
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Accuracy GMAC
TSN-25 55.49 194.98
TSN-25 + Skip-Conv 54.77 41.02
TSN-6 53.84 46.80
TSN-6 + Skip-Conv 53.77 35.83

Table 1: Video classification results. Skip-Conv reduces
the computation cost with a minor accuracy drop.
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Figure 1: Per-stage sparsity level of HRNet-32.

of 3D convolutions as a linear operator.

2. Sparsity ratios

In this section we analyze the amount of sparsity induced
by Skip-Conv in different levels of a backbone network. To
this end, we refer to the pose estimation experiments de-
scribed in Sec. 4.2 of the main paper, and we rely on the
same setting by considering the JHMDB dataset [2] with
a HRNet-w32 backbone network [5]. We train the Skip-
Conv model with Gumbel gates under different sparsity ob-
jectives, by varying § in [le — 5, 5e — 5, 10e — 5, 15e — 5].
For completeness, we also report the performance of these
models, that score [0.95,0.94,0.93,0.91] in PCK respec-
tively. We then measure how the firing probability of gates
in Skip-Conv changes at different depths in the network.

The results are summarized in Fig. 1, where we report the
probability of firing at different stages of the base HRNet-
w32 model, averaged over all test examples, different layers
within the same stage, and the three splits commonly used
in pose estimation protocols. The figure highlights how, in
general, Skip-Conv allows to bypass a significant amount of
computation. Even under very mild sparsity constraints (i.e.
B = le — 5), the Gumbel gates learn to skip more than half
of the pixels in feature maps overall. For intermediate val-
ues of 3, firing probabilities drop to below 0.2, and in some
cases fall under 0.1 for later stages in the network. For high



sparsity coefficients (i.e. 5 = 15e — 5) Skip-Conv mostly
relies on features from the first frame in the input clip, and
triggers computation very occasionally (0.8% to 2.1% of
pixels). Interestingly, for stage 2 has a firing probability of
zero: this means that the model only relies on features from
the reference frame for those layers, and that they suffice to
carry out correct predictions.
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