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1. Experiments on video classification
Although our work is mainly focused on stream process-
ing, i.e. video tasks where a spatially dense prediction is re-
quired for every frame, our Skip-Conv model can in princi-
ple enable improvement in efficiency of classification mod-
els. We hereby conduct a preliminary experiment with
video classification on human action dataset [2], and con-
sider the split-1 using RGB modality. We report Top-1 ac-
curacy for center-crop inference. As a backbone model, we
rely on Temporal Segment Networks (TSN) [6], based on
a ResNet-101. We study the performance of Skip-Conv in
two inference setup: i. TSN-25, where inference is car-
ried out over 25 frames per clip (sampled uniformly from
the whole video as in [6]). ii. TSN-6, where inference is
carried out over 6 frames per clip, so there are much less
redundancies between frames.
As reported in Tab. 1, Skip-Conv reduces the computation
cost with a minor accuracy drop. The computation gain
is higher for the high frame-rate model (TSN-25) as there
are more redundancies between video frames. For the low
frame-rate model (TSN-6), the compute is reduced from
46.80 to 35.83 GMACs even though the frame redundancies
and residual sparsities are fairly low because of the coarse
frame sampling.
Finally, we remark that many state-of-the-art video classi-
fication architectures rely on 3D backbones [1, 3, 4]. Al-
though the focus of this paper has been on 2D Skip-Convs,
Eq. 1 and 2 in the main paper can be extended to the case
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Accuracy GMAC

TSN-25 55.49 194.98
TSN-25 + Skip-Conv 54.77 41.02

TSN-6 53.84 46.80
TSN-6 + Skip-Conv 53.77 35.83

Table 1: Video classification results. Skip-Conv reduces
the computation cost with a minor accuracy drop.
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Figure 1: Per-stage sparsity level of HRNet-32.

of 3D convolutions as a linear operator.

2. Sparsity ratios
In this section we analyze the amount of sparsity induced
by Skip-Conv in different levels of a backbone network. To
this end, we refer to the pose estimation experiments de-
scribed in Sec. 4.2 of the main paper, and we rely on the
same setting by considering the JHMDB dataset [2] with
a HRNet-w32 backbone network [5]. We train the Skip-
Conv model with Gumbel gates under different sparsity ob-
jectives, by varying β in [1e− 5, 5e− 5, 10e− 5, 15e− 5].
For completeness, we also report the performance of these
models, that score [0.95, 0.94, 0.93, 0.91] in PCK respec-
tively. We then measure how the firing probability of gates
in Skip-Conv changes at different depths in the network.
The results are summarized in Fig. 1, where we report the
probability of firing at different stages of the base HRNet-
w32 model, averaged over all test examples, different layers
within the same stage, and the three splits commonly used
in pose estimation protocols. The figure highlights how, in
general, Skip-Conv allows to bypass a significant amount of
computation. Even under very mild sparsity constraints (i.e.
β = 1e− 5), the Gumbel gates learn to skip more than half
of the pixels in feature maps overall. For intermediate val-
ues of β, firing probabilities drop to below 0.2, and in some
cases fall under 0.1 for later stages in the network. For high



sparsity coefficients (i.e. β = 15e − 5) Skip-Conv mostly
relies on features from the first frame in the input clip, and
triggers computation very occasionally (0.8% to 2.1% of
pixels). Interestingly, for stage 2 has a firing probability of
zero: this means that the model only relies on features from
the reference frame for those layers, and that they suffice to
carry out correct predictions.
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