
Supplemental Material
Representation Learning via Global Temporal Alignment and Cycle-Consistency

Isma Hadji, Konstantinos G. Derpanis, Allan D. Jepson
Samsung AI Centre Toronto

{isma.hadji, allan.jepson}@samsung.com k.derpanis@partner.samsung.com

Our supplementary material is organized as follows: Sec.
1 derives several properties of the two smooth minimum
approximations introduced in the main manuscript. Sec.
2 provides details of our evaluation baselines. Sec. 3 fur-
ther explains our re-organization of FineGym to satisfy our
training requirements. For completeness, Secs. 4 and 5
provide additional fine-grained action recognition results.
Similarly, Sec. 6 provides additional alignment results on
PennAction. Finally, Sec. 7 probes our learned represen-
tations via visualizations to ascertain what information is
captured. A supplemental video highlighting the different
applications of the proposed loss is also provided.

1. Smooth Minimum Properties
We derive several properties of the two smooth minimum

approximations, smoothMin and min� . For more general
applicability, we consider any vector-valued input, a 2 RN .

smoothMin properties. The smoothMin function is de-
fined by

smoothMin(a; �) =

(
min{ai | 1  i  N}, � = 0

PN
i=1 aie

�ai/�

PN
j=1 e�aj/�

, � > 0
,

(1)

where � denotes a temperature hyper-parameter. Define a0

to be the minimum coefficient in a, that is, a0 = min(a).
Then for � > 0 it follows that

smoothMin(a; �) =
PN

i=1 aie
�(ai�a0)/�

PN
j=1 e

�(aj�a0)/�

= a0 +

PN
i=1(ai � a0)e�(ai�a0)/�

PN
j=1 e

�(aj�a0)/�

= a0 + �

PN
i=1((ai � a0)/�)e�(ai�a0)/�

PN
j=1 e

�(aj�a0)/�

= min(a) + � smoothMin((a� a0)/�; 1). (2)

Therefore, the smoothness penalty satisfies

d(a; �) := smoothMin(a; �)�min(a),

= � smoothMin((a� a0)/�; 1). (3)

Note that from (1) it follows that d(a; �) � 0, so we
have smoothMin(a; �) � min(a), i.e., it provides an up-
per bound on the true minimum.

The maximum possible value of the penalty d(a; �)
= �smoothMin(a � a0)/�; 1) is also of interest. Given
(3) it is sufficient to maximize smoothMin(r; 1) subject
to r1 = 0 and ri � 0 for i 2 {2, . . . N}. By setting
@
@ri

smoothMin(r; 1) = 0 and simplifying, we find

1� ri + smoothMin(r; 1) = 0 (4)

for i � 2. This implies all the ri’s for i > 1 are equal at the
maximum. Using (1) in (4), setting r1 = 0 and ri = x for
i > 1, and simplifying, we find x must be the solution of

x� 1 = (N � 1)e�x
. (5)

For N � 1, (5) has a unique solution x(N) � 1. This
implies that the penalty function (3) only has maxima, a,
for which there is exactly one distinct minimum value aj =
min(a), and all the other values are in an (N � 1)-way tie
for second largest at ai = aj + x� for i 6= j, and where x

is as in (5).
To compute the value of this maximum, we substitute

the resulting vector r =
⇥
0 x(N) . . . x(N)

⇤> into
smoothMin(r; 1) and, by simplifying, we find

max d(r; 1) =
(N � 1)x(N)e�x(N)

1 + (N � 1)e�x(N)

=
(N � 1)x(N) [(x(N)� 1)/(N � 1)]

1 + (N � 1) [(x(N)� 1)/(N � 1)]

= x(N)� 1, (6)

where we used (5) in the second line above.
For concrete examples, we find x(2) ⇡ 1.2785,

x(3) ⇡ 1.4631 for N = 2 and 3, respectively. Also,

1

for N � 4 it follows from (5) that x(N) < log(N + 1)
(since the left hand side less minus the right is negative at
x = 0, positive for x = log(N + 1), and the derivative
of this difference with respect to x is positive). Therefore,
(6) implies that the maximum smoothness penalty when
N = 2 is roughly 0.2785�, and 0.4631� for N = 3,
which are in agreement with the plot in Fig. 3 of the main
manuscript. Moreover, for large N the maximum penalty
is O(� log(N)).

min� properties. Similarly we examine min� , which is de-
fined by

min�(a) =

⇢
min{ai}, � = 0

�� log
PN

i=1 e
�ai/� , � > 0

. (7)

For a0 = min(a) and � > 0 we have

min�(a) = �� log
NX

i=1

h
e
�(ai�a0)/�e

�a0/�
i
,

= �� log

"
e
�a0/�

NX

i=1

e
�(ai�a0)/�

#
,

= ��

"
�a0/� + log

NX

i=1

e
�(ai�a0)/�

#
,

= min(a)� � log
NX

i=1

e
�(ai�a0)/� . (8)

Recall that a0 = min(a) so ai = a0 for at least one
i. Given that all the terms in the sum

PN
i=1 e

�(ai�a0)/�

are non-negative, and one of them is 1, we conclude thatPN
i=1 e

�(ai�a0)/� > 1. Therefore, we have min�(a) <

min(a), i.e., it provides an lower bound on the true mini-
mum.

Moreover, the maximum sum (8) occurs when ai = a0

for all i (i.e., there is an N -way tie for the minimum). In
this case

PN
i=1 e

�(ai�a0)/� = N . Therefore, we have
NX

i=1

e
�(ai�a0)/� 2 (1, N]. (9)

Finally, we see that the smoothness penalty when min� is
used is given by

d
�(a; �) := min�(a; �)�min(a),

= �� log
NX

i=1

e
�(ai�a0)/�

2 [�� log(N), 0). (10)

Therefore, we have shown that d �(a) is always negative
and achieves its most negative value of �� log(N) if and
only if the input vector a represents an N -way tie, i.e., a =⇥
a0 . . . a0

⇤>.

2. Baselines

We compare our approach to other weakly supervised [3,
5, 2] and self-supervised [1, 4] methods that entail temporal
understanding in their definition.
SpeedNet [1] learns a video representation by learning to
distinguish between videos played at different speeds.
Time Contrastive Networks (TCN) [5] makes fine-
grained temporal distinctions by optimizing a contrastive
loss that encourages embeddings of an anchor image and an
image taken simultaneously from a different camera view-
point to be similar, while the embedding of an image taken
from the same sequence of the anchor but at a different time
instant to be distant from that of the anchor.
Shuffle and Learn (SaL) [4] learns to predict whether a
triplet of frames are in the correct order or shuffled.
Discriminative Differentiable Time Warping (D3TW)
[2] was originally introduced to learn alignments between
video frames and action labels. Its definition includes a dis-
criminative component requiring explicit definitions of pos-
itive and negative pairs. A pair is considered positive if all
action labels are used in the alignment table, whereas neg-
ative pairs are constructed by dropping some of the action
labels. We adapt this loss to our video pair alignment setting
and define D3TW* as follows: a positive pair is constructed
by sampling frames from the entire duration of both video-1
and video-2 in any pair, whereas we randomly drop portions
of video-2 to constitute a negative pair, thereby mimicking
the dropping of action labels as proposed in the original pa-
per.
Temporal Cycle Consistency (TCC) [3] learns fine-
grained temporal correspondences between individual
video frames by imposing a soft version of cycle consis-
tency on the individual matches.

3. FineGym re-organization

As mentioned in the main mansucript, each video in Fin-
eGym is annotated according to a three-level hierarchy de-
noting the event being performed in the video, the differ-
ent sets involved in performing the event, and the frame-
wise elements (i.e., action phases) involved in each set. To
perform any event-level action, a gymnast may perform the
different sets in any order. To train our embedding network
using our alignment-based method, we re-organize the Fin-
eGym dataset such that all sets belonging to the same event
appear in the same order in any given video. For exam-
ple, given floor exercise events, gymnasts can perform four
different sets of exercises in any order, we re-organize the
clips in each video according to a selected prototype order,
as shown Figure 1. These organized event-level videos are
used during training and testing.

2

Set 1
Split leap

jump

Set 2
Turns

Set 3
Front salto

Set 4
Back salto

Floor exercise
prototypical order

Set 2
Turns

Set 4
Back salto

Set 3
Front salto

Set 1
Split leap

jump

Sample video in
FineGym of a

gymnast performing
floor exercise in

unconstrained order

Re-ordering sets to
match the floor
exercise prototype

Figure 1. Illustration of our re-organization of FineGym.

4. Fine-grained action recognition
In Sec. 4.4 of the main manuscript, we compared our

fine-grained action recognition performance to our base-
lines using FineGym with two training settings for the back-
bone framewise encoder. Here, we provide our complete
comparison. In addition, to training from scratch (train-
all) and fine-tuning the batch norm layers (only-bn), we in-
clude a third experiment consisting of fine-tuning all layers
of a ResNet50 model pre-trained on ImageNet (train-all).

The full results of all experiments are summarized in Ta-
ble 1. Consistent with our conclusions in Sec. 4.4, we out-
perform all the weakly and self-supervised baseline meth-
ods by significant margins under all training settings with
the best results obtained under the only-bn setting.

Method Training FineGym101 FineGym290
SpeedNet [1]

scratch

30.40 29.87
TCN [5] 36.52 37.40
SaL [4] 40.25 37.98

D3TW* [2] 32.10 32.15
TCC [3] 41.78 40.57

Ours 45.79 43.49
SpeedNet [1]

train all

28.27 30.95
TCN [5] 30.97 35.68
SaL [4] 36.76 39.76

D3TW* [2] 35.75 33.63
TCC [3] 44.29 40.31

Ours 47.78 44.77
SpeedNet [1]

only bn

34.38 35.92
TCN [5] 41.75 39.93
SaL [4] 42.68 41.58

D3TW* [2] 38.21 34.04
TCC [3] 45.62 43.40

Ours 49.51 46.54

Table 1. Fine-grained action recognition accuracy on both organi-
zations of FineGym.

For completeness, we also provide results of training the
SVM classifier for framewise fine-grained action recogni-
tion on the original FineGym99 and 288 short clips. The re-
sults of this experiment, summarized in Table 2, once again
demonstrate the superiority of the proposed approach even
under this more challenging setting. Notably, comparison
between our method and those reported in [6] is not direct
for two main reasons. First, we are targeting framewise ac-
curacy, whereas [6] focuses on clip-level accuracy. Second,
we are the first to report weakly supervised results on Fine-
Gym.

Method Training FineGym99 FineGym288
SpeedNet [1]

only bn

16.86 15.57
TCN [5] 20.02 17.11
SaL [4] 21.45 19.58

D3TW* [2] 15.28 14.07
TCC [3] 25.18 20.82

Ours 27.81 24.16

Table 2. Fine-grained action recognition accuracy on the original
clips of FineGym99 and FineGym288.

5. Details of fine-grained action recognition
To further investigate the utility of the learned embed-

dings, we also consider classification results of each event
separately. In particular, using the embeddings learned on
the entire FineGym101 dataset, we train a separate SVM
classifier for each event. The results summarized in Table
3, further confirm the superiority of our approach. These re-
sults also show that classifying the sub-actions in the floor
exercise (FX) event is the most challenging for all methods.
Careful examination of videos in this class revealed wide
variations in the way gymnasts perform each sub-action
in the floor exercise event, which makes learning a proper
alignment especially challenging.

Method VT, 8cls FX, 35cls BB, 33cls UB, 25cls
SpeedNet [1] 61.63 12.10 24.25 24.42

TCN [5] 68.82 13.49 29.57 27.14
SaL [4] 70.53 15.16 37.73 33.06

D3TW* [2] 65.79 13.57 31.96 26.61
TCC [3] 69.21 20.01 40.95 37.08

Ours 70.69 20.06 43.81 40.12

Table 3. Detailed evaluation of fine-grained action recognition per-
formance by looking at elements within each event separately.

6. Video synchronization
In the main manuscript, we provide results of video

synchronization under the challenging setting of training
a single network for all classes in PennAction, whereas
[3] trained a different network for each class. For com-
pleteness, we provide additional results here where we also
trained a network per class using our loss on PennAction to
directly compare with [3]. The results summarized in Ta-
ble 4 speak decisively in favor of our approach where we
outperform all approaches with a sizeable margin.

7. Visualizing learned features
To investigate what our learned representation captures,

we adapt the Class Activation Map (CAM) method [7] to
visualize the learned features. In particular, we extract fea-
ture maps from the last convolutional layer of our embed-
ding network and simply average them along the channel di-

3

Figure 2. Visualization of the features learned with the proposed alignment loss using the CAM method.

Method Kendall’s Tau
TCN [5] 73.28
SaL [4] 63.36
TCC [3] 73.53

Ours 78.29

Table 4. Video alignment results using Kendall’s Tau metric on
PennAction. Consistent with previous work, these results were
obtained by training a separate network for each class separately.

mension. The resulting activation maps are then normalized
between 0 and 1 framewise, upsampled to match the input
dimensions, and superimposed on the input video frames.
For PennAction, the heatmaps in Figure 2 (a) shows that
our embeddings are selective to body parts most involved
in performing an action. This can explained by the fact
that videos in PennAction are carefully curated with rel-

atively clean, similar actions with no repetitions. On the
other hand, we can see from Figure 2 (b), that our em-
beddings are tuned to human contact with surfaces to learn
alignments in FineGym. This is an especially desired be-
haviour as while there can be significant variations in the
way gymnasts perform different phases of an action, they
generally share some commonality in the manner that they
make contact with surfaces. More generally, these visual-
izations suggest that the proposed loss learns to adapt and
identify the most reliable cues to learn the alignments. Ad-
ditional activation visualizations are provided in the supple-
mental video.

8. Downstream applications

Please see accompanying supplemental video for various
downstream application results.

4

References
[1] Sagie Benaim, Ariel Ephrat, Oran Lang, Inbar Mosseri,

William T. Freeman, Michael Rubinstein, Michal Irani, and
Tali Dekel. SpeedNet: Learning the speediness in videos. In
CVPR, pages 9919–9928, 2020. 2, 3

[2] Chien-Yi Chang, De-An Huang, Yanan Sui, Li Fei-Fei, and
Juan Carlos Niebles. D3TW: Discriminative differentiable dy-
namic time warping for weakly supervised action alignment
and segmentation. In CVPR, pages 3546–3555, 2019. 2, 3

[3] Debidatta Dwibedi, Yusuf Aytar, Jonathan Tompson, Pierre
Sermanet, and Andrew Zisserman. Temporal cycle-
consistency learning. In CVPR, pages 1801–1810, 2019. 2, 3,
4

[4] Ishan Misra, C. Lawrence Zitnick, and Martial Hebert. Shuffle
and learn: Unsupervised learning using temporal order verifi-
cation. In ECCV, pages 527–544, 2016. 2, 3, 4

[5] Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine
Hsu, Eric Jang, Stefan Schaal, and Sergey Levine. Time-
contrastive networks: Self-supervised learning from video. In
ICRA, pages 1134–1141, 2018. 2, 3, 4

[6] Dian Shao, Yue Zhao, Bo Dai, and Dahua Lin. FineGym: A
hierarchical video dataset for fine-grained action understand-
ing. In CVPR, pages 2613–2622, 2020. 3

[7] Bolei Zhou, Aditya Khosla, Àgata Lapedriza, Aude Oliva, and
Antonio Torralba. Learning deep features for discriminative
localization. In CVPR, pages 2921–2929, 2016. 3

5

