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Figure 1. Diagram of an MS-TCN block. Diagram of a sin-
gle block in the multi-scale temporal convolutional network (MS-
TCN) that we employ. The stride is 1 for all convolutions. The
full temporal network we use consists of four such blocks. The
dilation rate in the first block is equal to 1, and each subsequent
block’s dilation rate is 2× the previous one’s.

1. More Implementation Details
1.1. Architecture details

A single block of the multi-scale temporal convolutional
network [18] (MS-TCN) used in our architecture is shown
in Figure 1. The abbreviations are defined as follows:

• Conv1D(x, y): 1-D convolutional layer with x output
channels and kernel size y. All use “same” padding
and stride of 1.

†Corresponding author.
All datasets were obtained by, and all training, testing, and ablation

studies have been conducted at Imperial College London.

• BatchNorm1D: 1-D batch normalisation [11] with mo-
mentum of 0.1.

• PReLU: Parametric ReLU activation [8] with a sepa-
rate learnable parameter for each input channel.

• Dropout(x): Dropout layer [22] with probability x.

1.2. Datasets

FaceForensics++ (FF++) [20]. We download the dataset
from the official webpage1. We use the provided train-
ing/validation/test splits.

FaceShifter [14]. We download the FaceShifter samples
(at c23 compression) from the same place as FF++, since
these have been recently added to the webpage. Note that
when we refer to FF++, we are referring to the version de-
scribed in the FF++ paper, i.e., containing the 4 manipula-
tion methods without FaceShifter. We use the same train-
ing/validation/test splits as in FF++.

DeeperForensics [12]. We download the dataset from the
official webpage2. We use the same training/validation/test
splits as in FF++.

Celeb-DF-v2 [17]. We download the dataset from the offi-
cial webpage3. We use the test set, which consists of 518
videos.

DFDC [7]. We download the test set of the full DFDC
dataset from the official webpage4. Some videos feature
more than one person. To remove ambiguities in prepro-
cessing, we only use single-person videos. Further, many
videos have been filmed in extreme conditions (lighting,
poses, etc) and/or have been post-processed with aggressive
corruptions. As such, we only use videos for which the face
and landmark detectors did not fail.

1https://github.com/ondyari/FaceForensics
2https : / / github . com / EndlessSora /

DeeperForensics-1.0
3https : / / github . com / yuezunli / celeb -

deepfakeforensics
4https://ai.facebook.com/datasets/dfdc
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Figure 2. All types of perturbations at all severity levels. Visualisation of the seven perturbation types we used in our robustness
experiments at all five of the severity levels. We note that in [12], “Pixelation” is named “JPEG compression,” though the official code, at
the time of writing, indeed performs pixelation (downscaling and upscaling).

1.3. Preprocessing

We use RetinaFace [5]5 to detect a face for each frame
in the videos. As in [20], we only extract the largest face
and use an enlarged crop, 1.3× the tight crop produced by
the face detector. To crop the mouths for LipForensics, we
compute 68 facial landmarks using FAN [2]6. The land-
marks are smoothed over 12 frames to account for motion
jitter, and each frame is affine warped to the mean face via
five landmarks (around the eyes and nose). The mouth is
cropped in each frame by resizing the image and then ex-
tracting a fixed 96 × 96 region centred around the mean
mouth landmark. We note that alignment is performed to
remove translation, scale, and rotation variations; it does
not affect the way the mouth moves.

5https://github.com/biubug6/Pytorch_Retinaface
6https://github.com/1adrianb/face-alignment

1.4. Baselines

For the baselines we consider, we provide details on our
implementations that are not given in the main text. Un-
less stated otherwise, Adam [13] optimisation is used with
a learning rate of 2× 10−4 and batch size of 32.

Face X-ray [15]. To generate the blended images for train-
ing, we use provided code7. In addition to the random mask
deformation and colour correction operations described in
the paper, the following augmentations are applied as per
the code: random horizontal flipping, JPEG compression
(with quality ∼ Uniform{30, 31, . . . , 100}), and pixelation
(downscaling image by a factor ∼ Uniform[0.2, 1]), each
with probability 0.5. For fair comparison with the other
methods, we also train with samples from FaceForensics++
(FF++). Following the code, each image sampled during
training is either a real FF++ frame or a fake sample, with
probability 0.5. In turn, each fake sample is either a blended
image or an FF++ fake frame, again with probability 0.5.

7https://github.com/AlgoHunt/Face-Xray



The cropped faces are resized to 317× 317 and then centre
cropped to 256× 256. The scaling factor, λ, corresponding
to the segmentation loss is set to 100, as in the paper.

CNN-aug [25]. We use the official code8. The cropped
faces are resized to 256 × 256. We use JPEG compres-
sion (with quality ∼ Uniform{60, 61, . . . , 100}) and Gaus-
sian blurring with standard deviation ∼ Uniform[0, 3], both
with probability 0.1. We also use horizontal flipping with
probability 0.5.

Patch-based [3]. We use the official code9. We train the
model ourselves, since no provided pretrained model was
trained on full FF++. The faces are aligned by affine warp-
ing them to the mean face and then resized to 299 × 299.
We use horizontal flipping with probability 0.5. Adam [13]
with learning rate 1× 10−3 is used, as suggested in the pa-
per.

Xception [20]. We use the official code10. The cropped
faces are resized to 299 × 299. We use horizontal flipping
with probability 0.5.

CNN-GRU [21]. The cropped faces are resized to 224 ×
224. We use horizontal flipping with probability 0.5. As
recommended in [21], we first train only the DenseNet-161
[10] (by adding a linear classifier). We then append a single-
layer, bi-directional GRU [4] with hidden size 128 and train
the whole network end-to-end.

Multi-task [19]. We use the official code11 and follow the
paper recommendations for all hyperparameters. We use the
“deep” version of the model. We train it ourselves since the
provided pretrained model has only been trained on a subset
of FF++. The cropped faces are resized to 256 × 256. We
use horizontal flipping with probability 0.5. Adam [13] with
learning rate 1× 10−3 is used, as suggested in the paper.

DSP-FWA [16]. We use the official code12 and pretrained
model (on self-collected real faces), which uses a dual spa-
tial pyramid approach. Each face is aligned and extracted at
10 different scales. They are all resized to 224× 224.

R(2+1)D-18 [24] and ip-CSN-152 [23]. We use the offi-
cial code13 and finetune pretrained models. We perform the
same preprocessing as for our LipForensics approach, ex-
cept that RGB frames are used rather than grayscale, since
the pretrained tasks use colour frames.

8https://github.com/peterwang512/CNNDetection
9https://github.com/chail/patch-forensics

10https://github.com/ondyari/FaceForensics
11https://github.com/nii-yamagishilab/ClassNSeg
12https://github.com/yuezunli/DSP-FWA
13https://github.com/facebookresearch/VMZ

Input type Pretrain Finetune FSh DFo
Full face none whole 68.2 67.1
Full face LRW whole 82.9 85.2
Full face LRW temporal 84.3 90.0
Mouth none whole 62.5 61.4
Mouth LRW whole 83.2 84.6
Mouth LRW temporal 87.5 90.4

Table 1. Full face crops versus mouth crops. Effect of training
on tight full face crops compared with training on mouth crops.
We report video-level accuracy (%) scores on FaceShifter (FSh)
and DeeperForensics (DFo) when trained on FaceForensics++.

SE-ResNet50 [9]. We use the ArcFace [6] code14 and fine-
tune the backbone of the model pretrained on face recogni-
tion datasets. The cropped faces are resized to 112 × 112,
since this is the size used during pretraining. We use hori-
zontal flipping with probability 0.5.

1.5. Robustness experiments

To apply the corruptions in our robustness experiments,
we use the DeeperForensics code15. All considered corrup-
tions at all severity levels are depicted in Figure 2.

2. Full Face Versus Mouth Crops
In the main text, we always use mouth crops for Lip-

Forensics. Here, we increase the crop from 88 × 88 to
112×112 (after random cropping) to also include the whole
nose and eyes in the input. We pretrain a new model on
LRW using this input. As shown in Table 1, when training
from scratch, using full faces rather than mouth crops yields
better generalisation to FaceShifter and DeeperForensics,
but when using lipreading pretraining, mouth crops perform
better. For both types of input, lipreading pretraining im-
proves accuracy significantly.

3. Qualitative Analysis
3.1. High-level mouth inconsistencies

Our approach targets high-level temporal inconsistencies
related to the mouth region. We show examples of such
anomalies in Figure 3. Notice that in some cases, the mouth
does not sufficiently close, as noted in [1]. In other cases,
subtle temporal inconsistencies in the shape of the mouth or
its interior (e.g., teeth) are present.

3.2. Failure cases

Examples of failure cases are given in Figure 4. In gen-
eral, we noticed that many of the failure cases involve rapid

14https : / / github . com / TreB1eN / InsightFace _
Pytorch

15https : / / github . com / EndlessSora /
DeeperForensics-1.0/tree/master/perturbation



head movements, poses that are uncommon in the training
set (FF++), or very limited mouth movements.

3.3. Occlusion sensitivity

We show more visualisation examples using the occlu-
sion sensitivity approach discussed in the main text. This
approach was introduced in [26]. It relies on systemati-
cally covering up different portions of the frames with a
grey block and measuring the effect on the predictions of
the model. We found that a block size of 40×40× t, where
t is the number of frames in the video, is suitable, as it is
large enough to sufficiently occlude the mouth region. Af-
ter each iteration, the block is displaced by one pixel, and
the probability of predicting the correct class is recorded for
each occluded pixel. Following this process, a heatmap can
be created by averaging the probabilities at each pixel loca-
tion. The heatmaps are finally normalised and overlaid on
the first frame of the video.

We show visualisation examples for Xception [20] (see
Figure 5) as well as for training the spatiotemporal network
from scratch (see Figure 6) and LipForensics (see Figure 7).
As mentioned in the main text, unlike Xception, LipForen-
sics consistently relies on the mouth region. Interestingly,
without lipreading pretraining, the network often seems to
rely on regions other than the mouth (such as the nose), de-
spite the (conservative) mouth crop. This is more the case
for the face swapping methods, Deepfakes and FaceSwap.
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Figure 3. Examples of semantically high-level inconsistencies around the mouth region. Rows 1-2 show mouths that do not sufficiently
close; rows 3-7 show mouths with limited mouth movements but which still exhibit anomalous behaviour; rows 8-9 show inconsistencies
in the teeth and lip shape; rows 10-11 show temporal irregularities in mouth shape (e.g., see frames 3 and 4 in row 10 and frame 3 in row
11). Subtle anomalies are more readily observed in video form.



Figure 4. Failure cases. Top two rows are real videos predicted as fake and bottom two are fake videos predicted as real.
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Figure 5. Visualisation examples for Xception. We show examples for Deepfakes (DF), FaceSwap (FS), Face2Face (F2F), and Neural-
Textures (NT).
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Figure 6. Visualisation examples for spatiotemporal network without lipreading pretraining. We show examples for Deepfakes (DF),
FaceSwap (FS), Face2Face (F2F), and NeuralTextures (NT).
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Figure 7. Visualisation examples for LipForensics. We show examples for Deepfakes (DF), FaceSwap (FS), Face2Face (F2F), and
NeuralTextures (NT).
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