
Supplementary Materials for
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Adaptive, Efficient, and Controllable Computation

The document explains 1) the full architectural speci-
fications; 2) remaining details on the noise-canceling op-
eration; 3) details on the differentiable clustering algo-
rithm; 4) details on the importance map modulation with the
application-specific attention maps; 5) datasets and metrics
used in the experiments and 6) more results. Table 2 gives
the list of hyper-parameters used in the experiments.

1. Full architectural specifications

Figure 1 provides the details of the four representa-
tive HG-CNN networks. For certain variants (specifically,
HG-ResUNet18+-Attn, HG-Orientation+-Attn, and HG-
ResUNet50-Attn), there exist some minor notes on the ar-
chitecture and the following explains all the points.

HG-ResUNet18+-Attn (road extraction): 1) The feature
map from 4th residual stage of the encoder is skipped and
concatenated with the output of HG-Conv modules on both
of the encoder and decoder. (The concatenated features are
further processed by 1× 1 convolution layers.) 2) We reuse
the same assignment matrix S at the decoder (i.e., the clus-
tering is only performed on the encoder.).

HG-Orientation+-Attn (road extraction): The major
modification from the original model [1] is 1) hourglass
module is replaced by multiple branches of small hourglass
modules, 2) HG-Conv is applied on the encoder and de-
coders in each branch, and 3) active focus is introduced on
the second stack of the refinement part.

HG-ResUNet50-Attn (salient object detection): The ba-
sic architecture is almost the same as HG-ResUNet18+-
Attn except several tiny differences as below; 1) The en-
try part is the same as the original ResNet (i.e., the stride
of the first 7 × 7 convolution is 2, and the max-pooling
layer follows the convolution), 2) the dilated convolution
is used at the 3rd and 4th residual stages. 3) the auxiliary
loss is eliminated when the active focus is not used (i.e.,
HG-ResUNet50).

Algorithm 1 Differentiable SLIC
Input: Input feature matrix X; a set of cluster center coor-

dinates V0; a set of input pixel coordinates V ; number
of clusters m; and number of iterations Niter

Output: Assignment matrix S
1: S0 ← Fnearest(V ,V0) . Initial assignment
2: for t = 1 to Niter do
3: S̄ ← Z−1S; Zjj =

∑
i Sij . Col-normalize

4: Xc ← S̄TX . Update cluster centers
5: Sij ← exp

{
−‖Xi − X̂c

j ‖
2
}

. Update
assignment

6: end for
7: Sij ← Sij I

(
Sij > 10−3

)
. Filtering

8: S̄ ← Z−1S; Zii =
∑

j Sij . Row-normalize
9: return S

2. Details on the noise canceling operation
The noise canceling operation has a few more post-

processing steps on the group adjacency matrices Âδ .
Firstly, small connection weights (Âδ

ij < 10−7) are filtered
out from the matrices (i.e., set to zero). Secondly, self-loop
Â	 is always reset to an identity matrix. Finally, the diag-
onal elements of the matrices Âδ are set to zeros except for
the self-loop adjacency matrix Â	.

3. Details on the differentiable clustering
We use the differentiable SLIC algorithm [4] in our ar-

chitecture with one enhancement. SLIC samples initial
cluster centers by uniform sampling. We use an adaptive
algorithm from a prior work [5] for further improvements.
The complete process is given in Algorithm 1. The hyper-
parameters of the algorithms are given in Table 2.

4. Details on the importance map modulation
Active focus modulates the importance map based on an

application-specific attention map via simple weighted av-
eraging. The section provides the full formula.

Let Cimp denotes the (H × W ) importance map and
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Cattn denotes the (H×W ) attention map with its elements
(Cattn)ij ranges from 0 to 1. The importance map is up-
dated as follows:

Cfocus =
1

Z
Cimp + αCattn. (1)

Z = max {Cimp[i, j]} is a normalization coefficient.
α(=10) is a weight coefficient for the attention map.

As introduced in the main paper, we define two types
of attention maps: object-aware and uncertainty-aware. Let
P = {Pi|i = 1 · · ·K} denote the K class prediction map
of shape (K ×H ×W ). Object-aware active focus sets the
attention map to Pk, where we are interested in an object in
the kth class.

Cattn = Pk. (2)

This form of attention focuses the cluster centers around the
target class k.

Uncertainty-aware active focus computes the attention
map as the entropy of the probability map.

Cattn =
1

logK

∑
k

{−Pk logPk}. (3)

The above attention focuses the cluster centers on the re-
gions where the model is uncertain for the prediction.

5. Datasets and metrics
Semantic segmentation: To evaluate the proposed method,
we use three semantic segmentation datasets, Cityscapes
[2], ADE20K [16], and PASCAL-context [8]. For all the
experiments, we use validation sets to evaluate the models.
• Cityscapes is a dataset for urban scene parsing, which
contains 5,000 images of resolution 1, 024×2, 048 with fine
pixel-wise annotations. The annotations have 30 classes.
We use the major 19 classes by following a prior conven-
tion. The dataset has the training, validation, and testing
sets with 2,975/500/1,525 images, respectively. Only fine
annotations are used for training.
• ADE20K is a dataset for the ILSVRC2016 Scene Parsing
Challenge, which contains more than 20K annotated im-
ages of natural scenes. The annotations are provided for
150 semantic categories such as objects and object-parts.
The dataset has training, validation, and testing sets with
20K/2K/3K images, respectively.
• PASCAL-context is a scene parsing dataset with 59
classes and one background class, which consists of 4,998
training images and 5,105 validation images. Following
previous works, we evaluated our models on the 59 classes
and excluded background class.
Road extraction: We evaluate our method on DeepGlobe
dataset [3], which consists of satellite images and corre-
sponding pixel-wise road mask annotations. The images

has 50 cm spatial resolution and pixel size of 1, 024×1, 024.
Following [1], we split the dataset into training and valida-
tion with 4,696 and 1,530 images, where the performance
is evaluated on road IoU and APLS metrics [10]. The
APLS metric measures similarity between a predicted and
a ground truth road graph.

Salient object detection: Following previous works [12,
15], we train our models on DUTS [11] dataset, and eval-
uate the models on ECSSD [13], PASCAL-S [7], DUT-
OMRON [14], HKU-IS [6], SOD [9], and DUTS [11]. For
evaluation metrics, mean absolute error (MAE) and maxi-
mum F-measure (maxF) are used as in prior works.

6. More results

Table 1 shows the per-class segmentation performance
gain achieved by HG-Conv for Cityscapes dataset. We see
that the HG-Conv performs well on both small and large
objects.

Figures 2, 3, 4, 5, 6, and 7 show additional experimental
results for the same problems discussed in the paper.
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Table 1. Per-class performance gain achieved by HG-conv for Cityscapes dataset.
Base network road s. walk build. wall fence pole t-light t-sign veg terrain sky person rider car truck bus train m-cycle bicycle
ResNet101-Dilation +0.2% +1.2% +0.3% +11.0% +1.6% +0.8% +0.3% +0.2% +0.2% -0.5% +0.2% +0.4% +2.5% +0.3% +10.0% +7.6% +27.6% +1.2% +0.6%
ResNet101-DCN -0.2% -0.8% +0.3% +12.0% +2.4% -0.1% -0.3% -0.1% 0.0% -0.9% 0.0% +0.4% +0.6% +0.4% +14.9% -0.3% -7.3% +0.9% +0.1%
HRNet-W48 0.0% +0.4% 0.0% +1.3% +0.4% 0.0% 0.0% +0.5% +0.1% +1.2% -0.1% +0.1% -0.2% +0.5% +9.6% +1.4% -0.8% +0.3% -0.3%

Table 2. List of hyperparameters used in the experiments.
Dataset Base Network HG-Conv Hyperparemeters for HG-Conv Other hyperparameters

#iter
clustering down ratio sampling

aux
coef input size train iter

batch
size optimizer initial LR

weight
decay lr schedule

Cityscapes
ResNet

non-HG - - - 0.4 713x713 60K 16 SGD 1.00E-02 1.00E-04 poly p=0.9

HG (DCN) 3 1/64
top-k+random
k=7, b=0.75 0.4 713x713 30K 16 Adam 1.00E-04 1.00E-04 poly p=0.9

HG (Dilation) 3 1/64
top-k+random
k=7, b=0.75 0.4 713x713 30K 16 Adam 1.00E-04 1.00E-04 poly p=0.9

HRNetV2 non-HG - - - - 512x1024 484epochs 16 SGD 1.00E-02 5.00E-04 poly p=0.9

HG 1 1/64
top-k+random
k=7, b=0.75 0.1 512x1024 484epochs 16 SGD 1.00E-02 5.00E-04 poly p=0.9

ADE20K
ResNet

non-HG - - - 0.4 473x473 125K 16 SGD 1.00E-02 1.00E-04 poly p=0.9

HG (DCN) 3 1/64
top-k+random
k=7, b=0.75 0.4 473x473 90K 16 Adam 1.00E-04 1.00E-04 poly p=0.9

HG (Dilation) 3 1/64
top-k+random
k=7, b=0.75 0.4 473x473 45K 16 Adam 1.00E-04 1.00E-04 poly p=0.9

HRNetV2 non-HG - - - - 512x1024 120epochs 16 SGD 2.00E-02 1.00E-04 poly p=0.9

HG 1 1/64
top-k+random
k=7, b=0.75 0.1 512x1024 120epochs 16 SGD 2.00E-02 1.00E-04 poly p=0.9

PASCAL
context

ResNet
non-HG - - - 0.4 520x520 30K 16 SGD 1.00E-02 1.00E-04 poly p=0.9

HG (DCN) 3 1/64
top-k+random
k=7, b=0.75 0.4 520x520 30K 16 Adam 1.00E-04 1.00E-04 poly p=0.9

HG (Dilation) 3 1/64
top-k+random
k=7, b=0.75 0.4 520x520 30K 16 Adam 1.00E-04 1.00E-04 poly p=0.9

HRNetV2 non-HG - - - - 512x1024 200epochs 16 SGD 1.00E-02 1.00E-04 poly p=0.9

HG 1 1/64
top-k+random
k=7, b=0.75 0.1 512x1024 200epochs 16 SGD 1.00E-02 1.00E-04 poly p=0.9

Road
Extraction

ResUNet non-HG - - - - 256x256 120epochs 32 Adam 1.00E-04 1.00E-04 poly p=0.9

HG 1 1/16
top-k+random
k=7, b=0.75 0.4 256x256 120epochs 32 Adam 1.00E-04 1.00E-04 poly p=0.9

Orientation non-HG - - - - 256x256 120epochs 32 SGD 1.00E-02 5.00E-04
step γ = 0.1

60, 90, 110epochs

HG 1
1/4

1/16
1/64

top-k+random
k=4, b=0.75)
k=16, b=0.75
k=64, b=0.75

- 256x256 120epochs 32 SGD 1.00E-02 5.00E-04
step γ = 0.1

60, 90, 110epochs

Salient Object
Detection ResUNet non-HG - - - - 352x352 24epochs 16 Adam 1.00E-04 1.00E-04 poly p=0.9

HG 1 1/4
top-k+random
k=4, b=0.75 0.4 352x352 24epochs 16 Adam 1.00E-04 1.00E-04 poly p=0.9
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Figure 1. Architecture specifications for the four representative HG-CNN networks.
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Input GT ResNet101-DCN HG-ResNet101-DCN
Figure 2. Prediction results of semantic segmentation.
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Input GT ResUNet18 HG-ResUNet18 HG-ResUNet18-Attn
Figure 3. Prediction results of road extraction.
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Figure 4. Visualization of HG-Conv on semantic segmentation. From left to right, the figures show, importance map, cluster center
allocation, clustering result, and adjacency connection (same order below). The adjacency connection shows the summed up connection
for all the direction-wise adjacency.
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Figure 5. Visualization of HG-Conv on road extraction. From left to right, the figures show, importance map, cluster center allocation,
clustering result, and adjacency connection (same order below). The adjacency connection shows the summed up connection for all the
direction-wise adjacency.
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Input GT ResUNet50 HG-ResUNet50
HG-ResUNet50-Attn

(object-aware)
HG-ResUNet50-Attn
(uncertainty-aware)

Figure 6. Prediction results of salient object detection

8



w
/o

 a
ct

iv
e 

fo
cu

s
O

bj
ec

t-
aw

ar
e

U
nc

er
ta

in
ty

-a
w

ar
e

w
/o

 a
ct

iv
e 

fo
cu

s
O

bj
ec

t-
aw

ar
e

U
nc

er
ta

in
ty

-a
w

ar
e

w
/o

 a
ct

iv
e 

fo
cu

s
O

bj
ec

t-
aw

ar
e

U
nc

er
ta

in
ty

-a
w

ar
e

Figure 7. Visualization of HG-Conv on salient object detection. From left to right, the figures show, importance map, cluster center
allocation, clustering result, and adjacency connection (same order below). The adjacency connection shows the summed up connection
for all the direction-wise adjacency.
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