
Monte Carlo Scene Search for 3D Scene Understanding
Supplementary Material

∗Shreyas Hampali(1), ∗Sinisa Stekovic(1), Sayan Deb Sarkar(1), Chetan S. Kumar(1),
Friedrich Fraundorfer(1), Vincent Lepetit(2,1)

(1)Institute for Computer Graphics and Vision, Graz University of Technology, Graz, Austria
(2)Université Paris-Est, École des Ponts ParisTech, Paris, France

In this supplementary material:
• we suggest some possible future directions,
• we detail our methods for generating layout and ob-

ject proposals, and give the pseudocode for MCTS for
reference,
• we provide additional comparisons with existing an-

notations, the results of our MCSS approach, and a
baseline using hill climbing for the optimization of our
objective function,
• we provide more qualitative results on scans outside

the ScanNet dataset.
In addition to this document, we provide a Supplemen-

tary Video showing the improvement of the solution found
by MCSS over time, and additional qualitative demonstra-
tions.

1. Future Directions
While MCSS usually recovers all objects in a scene and

complete layouts as we can use low thresholds when gener-
ating the proposals without returning false positives, there
are still situations where it is challenging to retrieve the cor-
rect object models or layout components, when the point
cloud misses too much 3D data.

There are still many directions in which our current
method could be improved. We could generate proposals
from the perspective views as well: RGB images often con-
tain useful information that is missing in the point cloud,
and we can handle many proposals. Comparing the final
solution with the RGB-D data could also be used to detect
objects or layout components that are not explained by the
solution, and could be integrated as additional proposals in
a new run of MCSS. To improve the 3D poses and models,
it would also be interesting to develop a refinement method
that improves all the identified objects together.

Furthermore, advanced MCTS-based algorithms such as
AlphaZero [7] utilize neural networks to evaluate the qual-

∗The first two authors contributed equally.

ity of state-action pairs. Similarly, it should be possible to
train a deep network to predict which proposals should be
evaluated first. We thus believe that our approach opens
new directions to explore.

2. Layout Proposal Generation
Figure 1 describes our layout proposal generation. We

first detect planes that are likely to correspond to layout
components (walls and floors in our experiments). Based
on the output from MinkowskiNet [4], we remove from
the point cloud the 3D points that do not belong to layout
classes, and perform RANSAC plane fitting on the remain-
ing points. We implemented a variant of RANSAC, using 3-
point plane fitting that determines inlier-points by their dis-
tance and their normals orientation with respect to the sam-
pled plane. We only fit a single floor plane as the SceneCAD
dataset [2] does not contain any scenes with multiple floor
planes.

At each iteration, our RANSAC procedure fits a plane to
three points that are randomly sampled from the remaining
point cloud. The inliers are defined as a set of points in
the point cloud for which the distance to the plane is less
than 10cm, and the orientation of the normal less than 15◦.
We perform 2000 iterations and select the plane with the
largest number of inliers. The final inliers are defined by
a selection criterion: A set of points in the point cloud for
which the distance to the plane is less than 20cm, and the
orientation of the normal is less than 30◦. If the number of
inliers of the plane is higher than 5000, we add the plane to
the set of layout planes and repeat the RANSAC procedure
on the remaining set of outliers. If the number is lower, we
perform a second stage RANSAC that seeks to find planes
corresponding to small layout components.

In this stage, we set the inlier criterion as follows: A set
of points in the point cloud for which the distance to the
plane is less than 100cm, and the orientation of the normal
is less than 10◦. The same criterion is used for the final
selection. If the number of inliers of the plane is higher than

1

300, we add the plane to the set of layout planes and repeat
the RANSAC procedure on the remaining set of outliers. If
the number is lower, we conclude the plane fitting stage.

Then, we proceed to define the set of layout proposals by
intersecting the layout planes. More exactly, intersections
between non-parallel planes triples are candidate corners for
the layout. By connecting the vertices that share a pair of
layout planes, we get a set of candidate edges. Finally, by
connecting the edges that lie on the same layout plane, we
extract a set of valid planar polygons for each of the planes.
As the SceneCAD dataset contains only scenes with a single
floor level, it is enough to perform the search procedure on
wall proposals only: the floor polygon can be directly de-
termined afterwards from the walls. This procedure results
in a large number of proposals. For non-cuboid scenes, we
obtain between 100 and 1000 proposals, but MCSS can ef-
ficiently select the final proposals as shown in Fig. 2.

3. Object Proposal Generation
The synthetic point clouds are generated using the

ShapeNet [3] CAD models and the ScanNet [5] dataset.
More specifically, we use the instance annotations of Scan-
Net and replace the point cloud corresponding to each ob-
ject with a random CAD model from the same category.
The complete scenes with the replaced CAD models are
rendered into each of the perspective views using the cam-
era poses and are then reprojected back to 3D. This intro-
duces the incompleteness to the synthetic point cloud due
to object occlusions. Furthermore, we also introduce depth
holes on the rendered depth maps before reprojecting to 3D
to make the point clouds more realistic. Fig. 3 shows an
example of a synthetic scene.

As explained in Section 4.3 of the main paper and shown
in Fig. 4, we use VoteNet [6] and MinkowskiNet [4] to ex-
tract the point cloud of each object in the scene. A Point-
Net++ based network trained on the synthetic point clouds
is used for object model retrieval and pose estimation. The
model retrieval is performed by regressing the embeddings
which are obtained by training a PointNet++ auto-encoder
on each category of objects. The pose+scale of the object is
obtained by regressing the orientation, bounding box center
and size. We use the L2 loss with all the embedding and
pose+scale parameters.

In Fig. 5, we show the MCSS tree structure for an exam-
ple scene constructed from several object proposals.

4. MCSS Pseudocode
MCSS follows the pseudocode for generic MCTS given

in Algorithm 1 that is usually used for single-player games.
As we explain in the main paper, for the simulation step we
can run multiple simulations in practice. For objects, we run
10 simulations in parallel, for layouts we found that running

Algorithm 1: Generic MCTS for non-random
single-player games

1 iters← Number of desired runs, best moves← ∅
2 while iters > 0 do
3 Ncurr ← Nroot
4 reached terminal← False
5 while not reached terminal do
6 Ncurr ← SELECT(Ncurr)
7 if Ncurr is visited for the first time then
8 EXPAND(Ncurr)
9 best sim←argmax

sim
sc(SIMULATE(Ncurr, sim))

10 UPDATE(best sim)
11 if sc(best sim) > sc(best moves) then
12 best moves← moves of best sim

13 reached terminal← True

14 else if Ncurr is terminal then
15 reached terminal← True

16 iters← iters - 1

17 return best moves

1 simulation was already enough to achieve robust results.

5. Test Scenes used in Scan2CAD Benchmark
There are 2 scenes out of 97 scenes we do not con-

sider from the test set while evaluating on the Scan2CAD
benchmark, specifically scene0791 00 and scene0793 00.
scene0791 00 contains multiple floor planes, a special case
that we do not address in the object tree, and scene0793 00
which contains inconsistent manual annotations as the
canonical pose of the chairs in the ground truth pool are
different.

6. Computation Times
For a typical scene with 20 walls and 10 objects, the pro-

posal generation and pre-rendering requires ∼15 mins for
objects and ∼5 mins for layouts. Our MCSS tree search
takes 5 mins for 7K iterations on an Intel i7-8700 machine.
We would like to point that the proposal generation time es-
pecially for objects can be significantly improved by using
simplified object models and parallel computations.

7. Comparisons and Visual Results
7.1. Hill Climbing Baseline

In addition to the VoteNet baseline for objects (see Sec-
tion 5.2 of the main paper), for reference, we also compare
our method to a more simple hill climbing optimization al-
gorithm than MCSS for both layouts and objects. At each

2

Input point cloud Layout planes segmentation Layout proposals Reconstructed Layout

Figure 1: We detect layout planes from the input point cloud using our RANSAC procedure. By intersecting these planes,
we obtain a large number of planar polygons which we take as our layout proposals. MCSS selects the optimal subset of
proposals that best fits the input scene.

Input scene Layout tree after MCSS Final solution

Figure 2: The layout proposals are organized into a tree structure such that proposals at the same level of the tree are
incompatible to each other but compatible with proposals of their ancestor nodes. Our MCSS approach builds the search tree
online and efficiently finds the optimal path, outlined blue, without exploring all candidate solutions.

iteration, the hill climbing algorithm selects the proposal
that results in the maximum increase in the scoring func-
tion. It stops when no proposal results in an increase. We
consider two different scoring functions for the hill climb-
ing algorithm:

• our scoring function S(O) used in MCSS (see Sec-
tion 4.1 of the main paper). In this case, the selection
depends also of the previously selected proposals and
the whole images, as the likelihood terms depend on
all the image locations. We do not consider propos-
als that are incompatible with the previously selected
proposals.
• the fitness of the proposal (see Section 4.2.1 of the

main paper). In this case, the scoring function depends
mainly on the proposal, but we still use the intersection
term in cases of objects, and do not consider propos-
als that are incompatible with the previously selected
proposals.

The hill climbing algorithm is very simple but provides a
local minimum.

More generally, most tree search algorithms will prune

parts of the tree based on local heuristics. By contrast,
MCTS explores the tree up to the leaves, which allows it
to look efficiently for the solution based on a global score.

7.2. Layout Estimation

Fig. 6 compares the RGB-D scans, the layout anno-
tations from [2], the layouts retrieved by our MCSS ap-
proach, and our new manual annotations for several rep-
resentative scenes from the ScanNet dataset [5]. We
show Scenes scene0645 00, scene0046 00, scene0084 00,
scene0406 00, and scene0278 00. Note that MCSS re-
trieves detailed layouts, despite noise and missing 3D data.

Fig. 7 shows typical outputs for the hill climbing algo-
rithm. Using our scoring function performs slightly better
than simply using the proposals’ fitness, however the results
are far from perfect as it focuses on the largest components,
which may be wrong.

7.3. Objects Retrieval and Pose Estimation

Fig. 8 compares the RGB-D scans, the 3D pose and
model annotations from [1], the 3D poses and models re-

3

Figure 3: An example synthetic point cloud used for training the network which generates the object proposals. The CAD
models corresponding to objects are shown on the right.

3D Semantic
Segmentation

(MinkowskiNet)

3D Object
Detection
(VoteNet)

3D Instance
Segmentation

CAD Model
Embedding

6D Pose

Scale

Model Retrieval
and Pose

Estimation
(PointNet++)

Scene
Pointcloud

Figure 4: Object proposals generation pipeline. We obtain 3D instance segmentation of the input point cloud using the
outputs of MinkowskiNet [4] and Votenet [6]. We then retrieve multiple CAD models proposals and their corresponding
pose+scale for each object instance using a PointNet++ network, which is trained using synthetic data.

trieved by our MCSS approach, and the output of the
VoteNet baseline (see Section 5.2 of the main paper) for sev-
eral representative scenes from the ScanNet dataset [5]. We
show Scenes scene0249 00, scene0549 00, scene0690 00,
scene0645 00, scene0342 00, and scene0518 00.

Our method retrieves objects that are not in the manual
annotations and sometimes more accurate models: See for
example the bed in the 5-th row of Fig. 8. The VoteNet
baseline often fails when the objects are close to each other.

Fig. 9 shows the results of hill climbing, compared to the
output of MCSS and manual annotations. The hill climb-
ing algorithm tends to choose large object proposals when-
ever available, leading to more simplistic solutions that of-
ten misses the finer details. Using fitness for the scoring

function does not consider the occlusions between objects
and results in even inferior results.

8. More Qualitative Results
To show that our method can be applied without retrain-

ing nor tuning, we scanned additional scene (the authors’
office and apartment), and applied MCSS. Fig. 10 shows
the scan and the retrieved layouts and objects.

References
[1] Armen Avetisyan, Manuel Dahnert, Angela Dai, Manolis

Savva, Angel X. Chang, and Matthias Nießner. Scan2CAD:
Learning CAD Model Alignment in RGB-D Scans. In CVPR,
June 2019. 3, 8

4

 RGB-D Input Object Tree after MCSS Final Solution

Figure 5: Visualization of an object tree in MCSS. At each level of the tree, an object proposal is incompatible with other
object proposals at the same level, but compatible with the proposal in the parent node and all its ancestors. MCSS builds the
search tree online and finds the optimal path, outlined blue, without exploring all the branches of the tree.

[2] Armen Avetisyan, Tatiana Khanova, Christopher Choy, Den-
ver Dash, Angela Dai, and Matthias Nießner. SceneCAD:
Predicting Object Alignments and Layouts in RGB-D Scans.
In ECCV, Aug. 2020. 1, 3, 6

[3] Angel X. Chang, Thomas A. Funkhouser, Leonidas J. Guibas,
Pat Hanrahan, Qi-Xing Huang, Zimo Li, Silvio Savarese,
Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi,
and Fisher Yu. ShapeNet: An Information-Rich 3D Model
Repository. CoRR, abs/1512.03012, 2015. 2

[4] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4D
Spatio-Temporal ConvNets: Minkowski Convolutional Neu-
ral Networks. In CVPR, 2019. 1, 2, 4

[5] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber,
Thomas Funkhouser, and Matthias Nießner. ScanNet: Richly-
Annotated 3D Reconstructions of Indoor Scenes. In CVPR,
2017. 2, 3, 4, 6, 8

[6] Charles R. Qi, Or Litany, Kaiming He, and Leonidas J.
Guibas. Deep Hough Voting for 3D Object Detection in Point
Clouds. In ICCV, 2019. 2, 4

[7] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis
Antonoglou, Matthew Lai, Arthur Guez, Marc Lanctot, Lau-
rent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lill-
icrap, Karen Simonyan, and Demis Hassabis. A General Re-
inforcement Learning Algorithm That Masters Chess, Shogi,
and Go through Self-Play. Science, 362(6419):1140–1144,
2018. 1

5

RGB-D scan Annotations from [2] MCSS output Our manual annotations

Figure 6: RGB-D scans from ScanNet [5], existing manual annotations, output of our MCSS approach, and our new manual
annotations. Note that we retrieve many details despite the noise and missing data in the scans.

6

Hill climbing based Hill climbing based
RGB-D scan on fitness on our score function MCSS output our manual annotations

Figure 7: Typical results of the hill climbing optimization for layout estimation and our results. Using our full scoring
function slightly helps but the hill climbing algorithm tends to select large components first and cannot recover when they
are incorrect. By contrast, our MCSS approach recovers detailed layouts.

7

RGB-D scan Annotations from [1] MCSS output VoteNet Baseline

Figure 8: RGB-D scans from ScanNet [5], existing manual annotations, output of our MCSS approach, and output of VoteNet
for object 3D pose and model retrieval. Note we retrieve objects (shown in red boxes) that are not in the manual annotations,
and that VoteNet tends to miss objects or recover an incorrect pose or model when objects are close to each other.

8

Hill climbing based Hill climbing based Scan2CAD
RGB-D scan on fitness on our score function MCSS output manual annotations

Figure 9: Typical results of the hill climbing optimization for object pose and model retrieval. The Hill climbing algorithm
tends to first focus on large object proposals (shown in black boxes), which may be wrong.

(a) (b)

Figure 10: RGB-D scans of the authors’ office and apartment (a) and the automatically retrieved object models from the full
ShapeNet dataset and layout (b). Our method generalizes well to RGB-D scans outside the ScanNet dataset. Note the large
areas with missing data, in particular for the layout.

9

