
Rethinking Channel Dimensions for Efficient Model Design
– Appendix –

Dongyoon Han Sangdoo Yun Byeongho Heo YoungJoon Yoo

NAVER AI Lab

A. Additional Search Results
We provide the additional results of searching an ef-

fective channel dimension configuration by the proposed
search method described in §4 to show the consistent
trend of the searched channel configurations over different
datasets. We perform searches on the CIFAR-10 dataset [9]
with the identical search constraints presented in Table 3 in
the main paper.

Following the previous analysis, we collect top-10%,
middle-10% (i.e., the models between the top 50% and
60%), and bottom-10% models in terms of the model ac-
curacy from 200 searched models to show the channel con-
figurations with the performance statistics after each search.
Figure A1 shows that the searched models as colored with
red, which look linear functions, have higher accuracy while
maintaining the similar computational costs. These simi-
lar trends are regularly observed while searching under the
various constraints, and we can parameterize the models
with a linear function by the block index again. The models
in green have highly reduced the input-side channels and
many output-side weight parameters resulting in the loss
of accuracy. In addition, blue represents the models at the
middle-10% accuracy, which looks similar to the conven-
tional channel configurations such as MobileNetV2’s [14].

All the searched channel configurations which can be ap-
proximated to linear parameterizations by the block index
have higher accuracy (red) then blue ones, which are show
the identical trends to Figure 2 in the main paper. It is worth
noting that all the red lines in Figure A1 have higher slopes
compared to those in Figure 2 in the main paper. This is
because CIFAR-100 models have more parameters at the fi-
nal classifier due to a larger number of classes, so the early
layers employ fewer parameters than those of the models
trained on the CIFAR-10 dataset.

B. Network Upgrade (cont’d)
In this section, we give further information of ReXNets

and introduce our new model rebuilt upon MobileNetV1 [7]
called ReXNet (plain) which does not use skip connec-

1 2 3 4 5
Block Index

20

40

60

80

100

Ch
an

ne
l D

im
en

sio
n

Top-10% Acc (%): 88.6±0.1
Mid-10% Acc (%): 87.8±0.0
Bot-10% Acc (%): 87.2±0.3

(a) Depth: 18 (# inverted bot.: 5),
Params'0.2M, FLOPs'30M

1 2 3 4 5 6 7 8 9
Block Index

50

100

150

200

Ch
an

ne
l D

im
en

sio
n

Top-10% Acc (%): 91.0±0.1
Mid-10% Acc (%): 90.5±0.0
Bot-10% Acc (%): 90.0±0.2

(b) Depth: 30 (# inverted bot.: 9),
Params'0.5M, FLOPs'100M

1 2 3 4 5 6 7 8 9
Block Index

0

50

100

150

200

250

300

Ch
an

ne
l D

im
en

sio
n

Top-10% Acc (%): 91.8±0.1
Mid-10% Acc (%): 91.4±0.0
Bot-10% Acc (%): 91.2±0.1

(c) Depth: 30 (# inverted bot.: 9),
Params'1.0M, FLOPs'200M

1 2 3 4 5 6 7 8 9 10111213
Block Index

0

100

200

300

400

Ch
an

ne
l D

im
en

sio
n

Top-10% Acc (%): 92.4±0.1
Mid-10% Acc (%): 91.9±0.0
Bot-10% Acc (%): 91.4±0.2

(d) Depth: 42 (# inverted bot.: 13),
Params'3.0M, FLOPs'350M

Figure A1. Visualization of searched models’ channel dimen-
sion on CIFAR-10. Red: top 10%-accuracy models; Blue: middle
10% models; Green: bottom 10% models; we plot the averaged
channel configurations with the 1-sigma range and report the av-
eraged top-1 accuracy over each searched candidate.

tions [5, 14] at each building block.

B.1. ReXNet (cont’d)

We have described our upgraded model based on Mo-
bileNetV2 [14], which follows the searched linear parame-
terization on channel dimensions with some minor modifi-
cations in §4.4. Here, we illustrate the network architecture
of our ReXNet (×1.0) in Figure A2a. We observe ReXNet
(×1.0) has the identical block configuration to that of Mo-
bileNetV2 where a single-type building block MB6 3x3,
which is the original inverted bottleneck [14] with the 3×3
depthwise convolution and the expansion ratio 6 is used as
the basic building block except for the first inverted bot-
tleneck. Every inverted bottleneck block that expands the

1

M
B6

_3
×3

M
B6

_3
×3

St
em

Co
nv
_3

x3

M
B1

_3
×3

M
B6

_3
×3

M
B6

_3
×3

M
B6

_3
×3

M
B6

_3
×3

M
B6

_3
×3

M
B6

_3
×3

M
B6

_3
×3

M
B6

_3
×3

M
B6

_3
×3

M
B6

_3
×3

M
B6

_3
×3

M
B6

_3
×3

M
B6

_3
×332
×1
12
×1
12

16
×1
12
×1
12

27
×5
6×
56

38
×5
6×
56

50
×2
8×
28

61
×2
8×
28

72
×1
4×
14

84
×1
4×
14

95
×1
4×
14

10
6×
14
×1
4

11
7×
14
×1
4

12
8×
14
×1
4

14
0×
7×
7

15
1×
7×
7

16
2×
7×
7

17
4×
7×
7

18
5×
7×
7

Co
nv
_1

x1

Po
ol
in
g
+
FC

12
80
×7
×7

(a) ReXNet (×1.0)

dw
co

nv
3×

3
co

nv
1×

1

dw
co

nv
3×

3
co

nv
1×

1

St
em

Co
nv

_3
x3

dw
co

nv
3×

3
co

nv
1×

1

dw
co

nv
3×

3
co

nv
1×

1

dw
co

nv
3×

3
co

nv
1×

1

dw
co

nv
3×

3
co

nv
1×

1

dw
co

nv
3×

3
co

nv
1×

1

dw
co

nv
3×

3
co

nv
1×

1

dw
co

nv
3×

3
co

nv
1×

1

dw
co

nv
3×

3
co

nv
1×

1

dw
co

nv
3×

3
co

nv
1×

1

dw
co

nv
3×

3
co

nv
1×

1

dw
co

nv
3×

3
co

nv
1×

132
×1

12
×1

12

96
×5

6×
56

11
4×

56
×5

6

19
2×

28
×2

8

24
0×

28
×2

8

28
8×

14
×1

4

33
6×

14
×1

4

38
4×

14
×1

4

43
2×

14
×1

4

48
0×

14
×1

4

52
8×

14
×1

4

57
6×

7×
7

62
4×

7×
7

10
24

×7
×7

Co
nv

_1
x1

Po
ol

in
g

+
FC

12
80

×7
×7

(b) ReXNet (plain)

Figure A2. Architectures of ReXNet (×1.0) and ReXNet (plain). MB1 and MB6 refer to MobileNetV2 [14]’s inverted bottlenecks with
the expansion ratio of 1 and 6, respectively. Each model has almost similar architectural elements compared to the original ones.

channel dimensions (except for the downsampling blocks)
has a skip connection where the expanded channel dimen-
sions are padded with zeros.

B.2. ReXNet (plain)

We now present a new model redesigned based on Mo-
bileNetV1 [7]. We choose MobileNetV1 as another baseline
because we intend to show a network architecture without
skip connections (so-called a plain network) is able to be re-
designed by following the proposed linear parameterization
to show performance improvement. We do not change the
depth of MobileNetV1. We use the identical configuration
at the stem (i.e., 3×3 convolution with BN and ReLU) and
the same large expansion layer at the penultimate layer.

We reassign the output channel dimensions of each 1×1
convolution as we did for ReXNet in §4.4. Following the
investigation of single-layer design, we only replace the Re-
LUs with SiLU [6, 12] after the expansion layers such as all
the 1×1 convolutions. We leave the ReLUs right after each
depthwise convolution where the channel dimension ratio is
1. All the other channel dimensions including the stem and
the penultimate layer are not changed. Since the network
is a plain network, we do not adopt SE [8]. Our ReXNet
(plain) is illustrated in Figure A2b. We provide the Ima-
geNet performance of ReXNet (plain) in Table A1. We train
the model by following the identical training setup in §5.1.
As shown in Table A1, ReXNet (plain) does not achieve the
best accuracy, but it is extremely faster than ReXNets on
both CPU and GPU even with larger FLOPs.

B.3. Overall models

In addition to the models introduced in Table 5 in the
main paper, we provide additional models adjusted by dif-
ferent width multipliers. Table A1 shows the ReXNets
(×1.1, ×1.2, ×1.4, ×2.2, and ×3.0) and our new model
ReXNet (plain) with the corresponding performances.

Network Top-1 Top-5 FLOPs Params. CPU GPU

ReXNet (plain) 74.8% 91.9% 0.56B 3.4M 22ms 10ms

ReXNet (×0.9) 77.2% 93.5% 0.35B 4.1M 46ms 20ms
ReXNet (×1.0) 77.9% 93.9% 0.40B 4.8M 47ms 21ms
ReXNet (×1.1) 78.6% 94.1% 0.48B 5.6M 51ms 24ms
ReXNet (×1.2) 79.0% 94.3% 0.57B 6.6M 53ms 26ms
ReXNet (×1.3) 79.5% 94.7% 0.66B 7.6M 55ms 28ms
ReXNet (×1.4) 79.8% 94.9% 0.76B 8.6M 57ms 30ms
ReXNet (×1.5) 80.3% 95.2% 0.86B 9.7M 59ms 31ms

ReXNet (×2.0) 81.6% 95.7% 1.5B 16M 69ms 40ms
ReXNet (×2.2) 81.7% 95.8% 1.8B 19M 73ms 46ms
ReXNet (×3.0) 82.8% 96.3% 3.4B 34M 96ms 61ms

Table A1. Performance of ReXNets. We report the Ima-
geNet [13] performances of ReXNets. In addition to Table 5 in the
main paper, we provide more models including ReXNet (plain)
and ReXNets (×1.1, ×1.2, ×1.4, ×2.2, ×3.0). All the models are
trained and evaluated with the resolution 224×224.

Nonlinearity Top-1 (%) Top-5 (%) FLOPs Params.

ReLU6 [14] 77.3 93.5 0.40B 4.8M
Leaky ReLU [11] 77.4 93.6 0.40B 4.8M
Softplus [3] 77.6 93.8 0.40B 4.8M
ELU [1] 77.6 93.7 0.40B 4.8M
SiLU [6, 12] 77.9 93.9 0.40B 4.8M

Table A2. Nonlinear functions and ImageNet accuracy.

C. Further Empirical Studies

C.1. Impact of nonlinear functions.

We have studied how nonlinearity can affect rank in the
investigation in S3. We further study the actual impact of
them by training the models on ImageNet. We train ReXNet
(×1.0) with ELU, SoftPlus, LeakyReLU, ReLU6, and SiLU
(Swish-1) with the identical training setup. As shown in Ta-
ble A2, we obtain the results of top-1 accuracy in the order
of SiLU (77.9%), ELU (77.6%), SoftPlus (77.6%), Leaky
ReLU (77.4%), and ReLU6 (77.3%), and the trend is sim-
ilar to the result in the empirical study in §3.2. The result

2

Model Input Size Bbox AP at IOU Params FLOPsAP AP50 AP75

EfficientNet-B0 [15] + SSDLite 320×320 23.6 39.4 23.3 6.2M 0.97B
ReXNet (×0.9) + SSDLite 320×320 24.6 41.2 24.6 5.0M 0.88B

EfficientNet-B1 [15] + SSDLite 320×320 25.6 42.2 25.8 8.7M 1.35B
ReXNet (×1.0) + SSDLite 320×320 25.2 41.9 25.3 5.7M 1.01B

EfficientNet-B2 [15] + SSDLite 320×320 26.4 43.4 26.6 10.0M 1.55B
ReXNet (×1.3) + SSDLite 320×320 27.1 44.7 27.4 8.4M 1.60B

Table A3. ReXNets vs. Noisy Student EfficientNets on COCO object detection. We compare our ReXNets trained solely on ImageNet
with stronger EfficientNets trained by Noisy Student training method [16] with RandAug [2]. Note that ReXNets here are equivalent to the
models in §5.2. We report box APs on val2017.

Model Input Size Avg. Precision at IOU Params. FLOPsAP AP50 AP75

EfficienetNet-B0 [15] + SSDLite 320x320 23.9 39.6 24.1 6.2M 0.97B
ReXNet (×0.9) + SSDLite 320x320 25.3 41.4 25.9 5.0M 0.88B

EfficienetNet-B1 [15] + SSDLite 320x320 25.6 41.9 26.0 8.7M 1.35B
ReXNet (×1.0) + SSDLite 320x320 25.9 42.6 26.3 5.7M 1.01B

EfficienetNet-B2 [15] + SSDLite 320x320 26.5 43.3 26.7 10.0M 1.55B
ReXNet (×1.3) + SSDLite 320x320 27.7 45.1 28.0 8.4M 1.60B

Table A4. ReXNets vs. EfficientNets on COCO object detection.. Note that all the models are trained from scratch with the identical
training setup except for the doubled training iterations. We report box APs on val 2017.

indicates the quality of different nonlinearities that relates
to model expressiveness; SiLU shows the best performance.
This may provide a backup for why the recent lightweight
models use SiLU (Swish-1) as the nonlinearity.

C.2. COCO object detection (cont’d)

We further provide more comparisons of ReXNets with
EfficientNets [15] in SSDLite [14] on object detection. We
first replace the EfficientNet backbone used in §5.2 with a
stronger EfficientNet [16]. We then compare them trained
from scratch on the COCO dataset [10].

Comparison with NoisyStudent EfficientNets. We now
compare ReXNets with stronger EfficientNets [16], where
the backbones are trained by a self-training method with
extra large-scale data and RandAug [2]. Our goal is to
show ReXNet’s architectural capability over the Efficient-
Nets without using the extra data when applying the back-
bones to a downstream task. We borrow the AP scores on
val 2017 from the ReXNet+SSDLite models in Table 6
in the main paperand train EfficientNet-B0, B1, and B2 in
SSDLite using the pretrained NoisyStudent+RA Efficient-
Net models which are publicly released1. All the AP scores
are evaluated by each checkpoint cached at the last itera-
tion. Table A4 shows that ReXNets outperform the counter-
parts with the comparable computational costs. This indi-
cates ReXNets pretrained on ImageNet are still promising.

Comparison of the models trained from scratch. We
aim to verify the model expressiveness itself without us-
ing ImageNet-pretrained backbones. This is because one

1https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet

may wonder using a pretrained models trained with dif-
ferent training setups such as optimizer or regularizers af-
fect the performance of downstream tasks. As shown in the
work [4], the COCO dataset [10] is able to be trained from
scratch, we verify the model’s pure expressiveness by train-
ing the models from scratch.

We individually train ReXNets (×0.9, ×1.0, and ×1.3)
and EfficientNet-B0, B1, and B2 in SSDLite without using
ImageNet pretrained backbones. All AP scores are evalu-
ated by each checkpoint cached at the last iteration again.
Table A4 shows that ReXNets outperform the counterparts
by +1.4pp, +0.3pp, and +1.2pp in AP score. With sim-
ilar computational demands, ReXNets beat the Efficient-
Net counterparts by large margins, and surprisingly, the
training from scratch makes ReXNet (×1.0) outperforms
EfficienetNet-B1 by +0.3pp with much less computational
costs. This indicates that our models are more powerful in
terms of expressiveness even without the aids of the super-
vision of ImageNet pretrained models.

3

References
[1] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochre-

iter. Fast and accurate deep network learning by exponential
linear units (elus). In ICLR, 2016. 2

[2] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V
Le. Randaugment: Practical data augmentation with no sep-
arate search. arXiv preprint arXiv:1909.13719, 2019. 3

[3] Charles Dugas, Yoshua Bengio, François Bélisle, Claude
Nadeau, and René Garcia. Incorporating second-order func-
tional knowledge for better option pricing. In NIPS, 2001.
2

[4] Kaiming He, Ross Girshick, and Piotr Dollár. Rethinking
imagenet pre-training. In ICCV, 2019. 3

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 1

[6] Dan Hendrycks and Kevin Gimpel. Gaussian error linear
units (gelus). arXiv preprint arXiv:1606.08415, 2016. 2

[7] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017. 1, 2

[8] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-
works. In arXiv:1709.01507, 2017. 2

[9] A. Krizhevsky. Learning multiple layers of features from
tiny images. In Tech Report, 2009. 1

[10] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
ECCV, 2014. 3

[11] Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng. Rec-
tifier nonlinearities improve neural network acoustic models.
In ICML Workshop on Deep Learning for Audio, Speech and
Language Processing, 2013. 2

[12] Prajit Ramachandran, Barret Zoph, and Quoc V Le.
Searching for activation functions. arXiv preprint
arXiv:1710.05941, 2017. 2

[13] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. Imagenet large scale visual recognition challenge.
International Journal of Computer Vision, 115(3):211–252,
2015. 2

[14] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In CVPR, 2018. 1, 2, 3

[15] Mingxing Tan and Quoc V Le. Efficientnet: Rethinking
model scaling for convolutional neural networks. arXiv
preprint arXiv:1905.11946, 2019. 3

[16] Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V
Le. Self-training with noisy student improves imagenet clas-
sification. In CVPR, 2020. 3

4

