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Synopsis

This document constitutes the following supplemen-
tary materials

1. The poofs of the noisy mate constraints (for Sec. 4
in the paper)

2. Technical details regarding the synthesis of the
datasets used for empirical properties (Sec. 5 in
the paper) and experimental evaluation (Sec. 8 in
the paper).

3. Proofs for the puzzle properties (for Sec. 5 in the
paper).

4. Animated (videos) and extended experimental re-
sults (for Sec. 8 in the paper).

Please note that the code for synthesizing and solving
crossing cut puzzles, as well as the benchmark dataset,
are all available for the scientific community and will
be released upon publication of the paper in the au-
thors web site. For the sake of anonymity this code
and pointers currently remain concealed but will be in-
cluded in a form of a URL in the camera-ready version.

1. Noisy puzzles - Proofs and extended
discussion

In this section of the Supplementary Materials we
extend the corresponding section in the paper and in
particular, provide the proofs for the results in its
Sec. 4.

Real-world data, its measurement, or its represen-
tation, are never completely accurate. Even if the
measurement or the digital representation of the pieces
were devoid of errors, real life crossing cuts puzzles (or
geometric puzzles in general) may incorporate deforma-
tions to the piece shapes. Such noise can be modelled
in many different ways, though one particular appeal-
ing is material degradation, and thus piece shrinkage, a
process clearly relevant for applications involving phys-
ical pieces (e.g. in archaeology).

In order to incorporate material degradation with-
out escaping the crossing cuts framework, we model

this process by preserving the number of vertices of
each piece, but shifting (i.e., collapsing) each of them
inward by a random distance that is distributed (in our
case, uniformly) in a given range. We note that the
particular distribution of such noise may affect certain
statistical properties (see Sec. 3 below), but otherwise
it is less significant for the reconstruction algorithm
proposed below.

Formally, given a noise level ε, a vertex −→v j
i of

piece pi is perturbed inwards by a distance −→ε ji that
is bounded relative to the puzzle diameter D (distance
between furthest vertices). Let ξ be that bound, that
sets the absolute noise level at ε = ξ · D. An origi-

nal piece pi =
{−→v 1

i , . . .
−→v Ni
i

}
ends up as the following

ε-noisy piece p̃i

p̃i =
{−→v 1

i +−→ε 1
i , . . . ,

−→v Ni
i +−→ε Ni

i

}
(1)

where
∥∥∥−→ε ji∥∥∥ ∼ U(0, ε) (2)

and ]−→ε ji ∼ U
(
]−→e ji ,]

−→e j+1
i

)
(3)

where ]eji ,]e
j+1
i are the angles of the piece edges leav-

ing −→v j
i towards the nearby vertices. With this and the

distribution of the angle of the perturbation vector −→ε ji
is constrained inward, i.e., “into” the material rather
than along arbitrary direction. Fig. 1A illustrates how
such noise could affect the shape of a quadrilateral (4-
side) piece.

Naturally, the incorporation of noise affects the va-
lidity of our constraints on mating. In particular, the
number of potential mates now increases drastically
and far from uniqueness, and the implications on a re-
construction algorithm are paramount. In this sense,
C1 and C2 must be revised, as discussed next.

1.1. C̃1 : Mate length constraint under noise

Since now plausible matings should match edges
that have been perturbed differently, the mate length
constraint must be relaxed to accommodate these in-
dependent perturbations. Let e and e′ be the matching
edges before applying the noise while ẽ and ẽ′ denote
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their corresponding ε-noisy edges. It follows that ẽ and
ẽ′ might have respective lengths L̃ and L̃′ that satisfy
|L̃ − L̃′| ≤ 4ε. The maximum error (4ε) can occur
when one of the edges is shortened by 2ε and the other
is lengthened by 2ε. See Fig. 1B for an illustration of
how edges may lengthen even though the deformation
represents the erosion of material.

1.2. C̃2 : Mate angle constraint under noise

While it is clear that vertices of neighboring pieces
may not meet if either sustains noise, and thus may no
longer expected to generate two supplementary angles
in a strict way, one can still bound the deviation from
that ideal behavior. To do so we first analyze the
effect of noise on the degree of rotation of any single
edge, and then leverage that result for the desired
bound on the angles of mating edges under noise.

i. Bound on the rotation of a single ε-noisy edge

Let e = (−→u 1,
−→u 2) be a piece edge with

size ‖−→u 1 −−→u 2‖ = L and coordinates −→u 1 =
(x1, y1),−→u 2 = (x2, y2), and assume (without loss
of generality) that this edge is aligned with a ref-
erence coordinate system such that it lies on the
X axis and thus stretches from −→u 1 = (0, 0) to
−→u 2 = (L, 0). The orientation of this edge is of
course ]e = 0o, as illustrated in Fig. 1A.

Let us now denote by ẽ = (
−→̃
u 1,
−→̃
u 2) = ((x̃1, ỹ1),

(x̃2, ỹ2)) the same edge after applying the noise.
Except for accidental cases (where the vertical
translation of the two vertices −→u 1 and −→u 2 due
to the noise is identical), the orientation ]ẽ of
edge ẽ will be different than ]e (as was the case
in Fig. 1B, for example). Let ∆Θe(L, ε) be the
bound on the difference between these two orien-
tations over all possible ε-noisy edges, i.e., over all
combinations of ẽ vertices:

∆Θe(L, ε) = max
ẽ
|]ẽ− ]e| = max

ẽ
|]ẽ| (4)

To achieve the maximal orientation change ∆Θe

while the vertices of ẽ remain in their respective
error zones, it is needed to perturb one of the ver-
tices only horizontally while the other is perturbed
vertically as much as possible. This happens when
ẽ becomes tangent to the error zone as shown in
Fig. 1C and thus the bound is:

∆Θe(L, ε) =

{
arcsin

(
ε

L−ε

)
L > 2ε

∞ L ≤ 2ε
. (5)

Note that the worst case is assigned to “short”
edges (L ≤ 2ε) to reflect the possibility they might
take arbitrary orientation or simply vanish after
the noise. In these cases we set the bound to infin-
ity, representing the fact that the angle constraint
cannot contribute useful information.

Eq. 5 requires to know the length of the original
(“clean”) edge L, but in practice only L̃ can be
measured. However, following constraint C̃1 and
Sec. 1.1, it holds that L ≥ L̃ − 2ε and this lower
bound can be used as a worst case. We there-
fore conclude that an ε-noisy edge ẽ with length L̃
might rotate relative to the original “clean” edge
no more than

∆Θe(L, ε) ≤ ∆Θe(L̃− 2ε, ε)

=

{
arcsin

(
ε

L̃−3ε

)
L̃ > 4ε

∞ L̃ ≤ 4ε
,

(6)

that proves the result presented in the paper.

ii. Bound on the angle difference of two mating edges

Let e and e′ be two (clean) mates and denote the
corresponding lengths of their edges before, at, and
after the mating as L−1, L0, L1 and L′−1, L

′
0, L
′
1,

respectively (see Fig. 2A). Let α1, β1 and α2, β2

be the pairs of supplementary angles these mates
form with their adjacent edges at their vertices, as
illustrated in Fig. 2A. The mate angle constraint
C2 dictates that

α1 + β1 = α2 + β2 = π . (7)

Let α̃i, β̃i i ∈ {1, 2} be the angles corresponding
to αi, βi after applying the noise (as in Fig. 2B).
From Eq. 5 we get

|α1 − α̃1| ≤ ∆Θe(L0, ε) + ∆Θe(L−1, ε) (8)

|α2 − α̃2| ≤ ∆Θe(L0, ε) + ∆Θe(L1, ε) (9)

|β1 − β̃1| ≤ ∆Θe(L
′
0, ε) + ∆Θe(L

′
−1, ε) (10)

|β2 − β̃2| ≤ ∆Θe(L
′
0, ε) + ∆Θe(L

′
1, ε) (11)

Combining with the mate angle constraint:

|π − α̃1 − β̃1| ≤ ∆Θe(L0, ε) + ∆Θe(L−1, ε)

+ ∆Θe(L
′
0, ε) + ∆Θe(L

′
−1, ε)

(12)

|π − α̃2 − β̃2| ≤ ∆Θe(L0, ε) + ∆Θe(L1, ε)

+ ∆Θe(L
′
0, ε) + ∆Θe(L

′
1, ε)

(13)
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ẽ

e

Error zone Error zone
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A B C
Figure 1: The effect of noise on edge length and orientation. A: Each of the vertices of a piece pi is collapsed inwards
along a uniformly distributed direction and as far as a uniformly distributed distance to create the ε-noisy piece p̃i. B: A
case where edge e increases in size after the application of noise, even though all the vertices collapsed inwards to end up as
ẽ. Clearly, ||ẽ|| is bounded by ||e||+ 2ε. C: If the clean edge e (in green) stretches (w.l.o.g) from u1 = (0, 0) to u2 = (L, 0),
the vertices of the ε-noisy edge bust lie in the corresponding error zones. When considering the angle of the ε-noisy edge ẽ
(in red), the worst case occurs when one of the vertices (say, u1) is only perturbed horizontally by ε, while the other (say,
u2) is perturbed to maximize the rotation, i.e, to a point ũ2 = (x̃, ỹ) that makes ẽ tangent to the error zone. This bound is
expressed in Eq. 5.
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A B
Figure 2: The effect of noise on the mate angle constraint. A: Without noise, angles must comply to the original constraint
α1 + β1 = α2 + β2 = π B: After applying the noise the ε-noisy angles are affected by the change in orientation in all edges
that meet at both vertices of the mating, to result in the bound in Eq. 15.

And finally, we apply the bound in Eq. 6 to reflect
the fact that the true edge lengths are unknown.
The mate angle constraints under noise thus be-
comes

|π − α̃1 − β̃1| ≤ ∆Θe(L̃0 − 2ε, ε)

+ ∆Θe(L̃−1 − 2ε, ε)

+ ∆Θe(L̃
′
0 − 2ε, ε)

+ ∆Θe(L̃
′
−1 − 2ε, ε)

(14)

|π − α̃2 − β̃2| ≤ ∆Θe(L̃0 − 2ε, ε)

+ ∆Θe(L̃1 − 2ε, ε)

+ ∆Θe(L̃
′
0 − 2ε, ε)

+ ∆Θe(L̃
′
1 − 2ε, ε) .

(15)

As with the mating in the “clean” case, we may refer
to the noisy mating constraint as predicates:

∀i ∈ {1, 2} C̃i

(
eji , e

l
k

)
= true ⇔

eji and elk satisfy constraint C̃i

(16)

2. Data synthesis

Since there is no previous work on crossing cuts puz-
zles, no data or benchmark results exists either. Part
of our contribution here is a mechanism for data syn-
thesis, as well as the first public dataset of crossing
cut puzzles. Such synthesis tools and dataset facilitate
both exploration of statistical properties of such puz-
zles and the experimental evaluation of reconstruction
algorithms.

The synthesis process is based on a computational
procedure that receives as input a description of the
global shape S (which could be crafted or random; see
below) and the crossing cuts that dissect it Cuts =
{c1, . . . ca}. It returns both the puzzle, which can
be given as input to reconstruction algorithms, and
the ground truth solution that can be used to eval-
uate performance of puzzle solvers. As discussed in
the paper, the puzzle is a bag of polygonal pieces
P = {p1, . . . pn}, each represented properly by its ver-
tices in some coordinate frame of reference, and the
ground truth solution constitutes a representation of
the matings M , as well as the Euclidean transforma-
tions ((R1, t1), . . . (Rn, tn)) that place the pieces cor-
rectly in the reconstructed puzzle.
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The process of synthesizing crossing cuts puzzles
thus constitutes several aspects, all of which are de-
scribed next for the sake of reproducibility.

2.1. Planar graph representation

Let S ⊆ R2 be polygonal puzzle shape. The first
stage of data synthesis is to construct a planar graph
Gplane = (V, E) that represents both the boundary of
S and the cuts that go through it. Toward that end
we first combine both the boundary lines of S (dashed
blue lines in Fig.3) and the crossing cuts themselves
(dashed red lines in Fig. 3) into one set of lines:

C = Cuts ∪ {edge lines of S} . (17)

The way lines are represented is secondary, but in our
case we represent each of them as a triplet (a1, a2, a3),
where ai are the coefficients of the line equation a1x+
a2y + a3 = 0.

The nodes of Gplane are the intersection points of
any two lines in C that rest inside or on the border of
S (see Fig. 3). Formally, this set of points is defined as
follows:

V =
{
i ∈ S

∣∣∣ ∃(c1, c2) ∈ C × C, (c1 6= c2)∧

(i is an intersection of (c1, c2))
}
.

(18)

The set E of edges of Gplane link pairs of nodes that rest
on the same line with no other nodes between them:

E =
{
{i1, i2}

∣∣∣ ∃c ∈ C,
(i1, i2 ∈ c ∩ V) ∧ ([i1, i2] ∩ V = ∅)

} (19)

where [i1, i2] is the line segment between nodes i1 and
i2.

i2i1

i10

i3

i4
i5

i6i7i8

i9

i11
i12

i13

Figure 3: A planar graph extracted from a crossing cuts
puzzle of 3 cuts. The green quadrilateral is the global puzzle
shape S having the 4 blue boundary lines. It is being cut
by 3 red crossing cuts. The nodes of the extracted planar
graph are the intersection points inside or on the border of
S. Thus, the intersection points {i1 . . . i12} are nodes in the
graph, but i13 is not. The edges link two intersection points
resting on the same line with no other points in between
them. Hence {i3, i4}, {i3, i2}, {i4, i5} are edges but {i3, i5}
is not.

2.2. Piece extraction and representation

The extraction of the pieces from planar graphs
has been addressed in the graph algorithms commu-
nity and here we employ the optimal algorithm due
to Jiang and Bunke [2]. This computational process
receives the planar graph Gplane from Sec.2.1 and out-
puts all of the minimal polygonal regions of the graph,
each represented by the nodes that delineate it (e.g,
(i1, i2, i11, i10) is one region in the puzzle in Fig. 3).

The main construct in the algorithm is the notion of
wedge, defined as a pair of edges that meet at a node
(e.g., ({i1, i2}, {i2, i3}) so that no other edge is encoun-
tered when rotating the first edge towards the second
(e.g. (i2, i11, i4) in Fig. 3 is a wedge, but (i10, i11, i4) is
not a wedge). A closed chain of overlapping wedges (e.g
((i1, i2, i11), (i2, i11, i10), (i11, i10, i1)) in Fig. 3) defines
a region, and thus a puzzle piece (e.g., (i1, i2, i11, i10)
in our example). The sorting scheme that locate
the wedge chains was shown to have O(|E| log(|E|))
run-time complexity and O(|E|) memory complexity.
Please refer to the original paper [2] for additional de-
tails.

We note that once extracted, the pieces are posi-
tioned correctly, i.e as they would be positioned in a
solved (and ’clean’) puzzle. Since the puzzle should in-
clude no information about the ground truth position
of the pieces, we now center each of them at its center
of mass (the average of all vertices) and rotate it by
some random angle.

Once the pieces are centered and rotated, we also
create a noisy version of each piece by adding to each
vertex a random noise vector that obeys the constraints
in Eqs. 1 and 3 in Sec. 1 above.

2.3. Extraction of ground truth matings

The original pieces obtained above (before their rep-
resentation in their own coordinate frame and the ap-
plication of noise) are positioned in their “correct”
place in the solved puzzle. Specifically, any pair of
neighboring pieces is positioned such that their mat-
ing edges overlap. Hence the extraction of the ground
truth matings can be done by finding all identical edges
eji and elk that reside in different pieces. Formally, if
Em represents the edges of piece pm (cf. Sec. 2 in the
main paper) and thus E = (

⋃n
m=1Em) is the set of all

edges of all pieces, the ground truth matings are

M =
{

(eji , e
l
k) ∈ E × E

∣∣∣ (pi 6= pk) ∧ eki = elk

}
. (20)

2.4. Datasets

We created two datasets using the procedure just de-
scribed. One was tailored for the empirical exploration
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of some statistical properties of crossing cuts puzzles
and the other for test and evaluation of crossing cuts
solvers including ours, of course)

• Synthesized puzzles for statistical proper-
ties: Since the statistical properties of crossing
cuts puzzles were analyzed for unit circles. The
corresponding empirical properties were measured
on synthesized puzzles whose shape was a Tria-
contadigon (i.e., an approximation of a circle as a
polygon of 32 sides). The random cuts in this case
were select by sampling two angles φ1, φ2 and then
passing a line though the corresponding points
on the circumference of the circle (cosφ1, sinφ1),
(cosφ2, sinφ2).

Following this procedure we generated a collection
of 300 puzzles, 30 puzzles for 10 different num-
bers of crossing cuts (10, 20, . . . , 100), as depicted
in Fig. 3 of the main paper.

• Synthesized puzzles for solver evaluation:
Unlike the crafted puzzle shape used for the analy-
sis of properties, the evaluation of our solver (and
in the future, others’ solvers as well) required ran-
domly shaped (yet convex) puzzles. To achieve
this goal we first sampled a random number of
random points (between 4 and 50) in some pre-
determined work space [0,W ] × [0, H] and then
computed their convex hull. W,H are given as
parameter to the synthesizer and bear very lit-
tle significance, but in our case we fixed them at
W = H = 100.

The random cuts Cuts = {c1, . . . ca} were also
selected as uniformly distributed random lines in
this area, but to ensure they penetrate the random
polygon we first selected two random points inside
polygon and defined the cut as the line that goes
between these points.

While this procedure can be activated on demand,
we used it to generate a collection of 175 puzzles,
whose global polygonal shape range from 3 to 14
sides, the number of cuts vary from 5 to 35, and
number of pieces extends from 14 (in the easier
puzzles) to 460 (in the more challenging ones).

The puzzle dataset used for the solver evaluation is
provided here in the Supplementary Materials and
further explanations about its format are in the
file Help.txt. The code for the synthesis and the
puzzle solver will be provided upon publication.

3. Puzzle properties

In this section of the Supplementary Materials we
extend the corresponding section in the paper and in

particular, provide all the proofs for the properties that
appear in Table 1 of the paper.

One of the advantages of partially constrained mod-
elled puzzles (cf. Sec. 1 in the main paper) is the better
ability to analyze their properties. Since crossing cuts
puzzles are results of a stochastic process, their prop-
erties are typically probabilistic, but nevertheless can
provide insights on both the problem itself and about
potential solutions (or limitations thereof). Here we ex-
plore such properties both empirically, and when pos-
sible, also analytically. In this section we assume that
the global puzzle shape is a unit circle (or a polygo-
nal approximation thereof), whose symmetry simplifies
some of the analytical analyses.

3.1. Expected cut length

A first measure of interest is the length of a ran-
dom cut ci through the global puzzle shape. When the
latter is a circle, ci is determined by two points sam-
pled uniformly on the circumference of the circle. In
other words, the cut is determined by the chord be-
tween points −→p1 = (cosφ1, sinφ1),−→p2 = (cosφ2, sinφ2),
where the two angles are uniformly distributed ran-
dom variables φ1, φ2 ∼ U(0, 2π). The length of cut
ci is therefore another random variable defined by the
function li = ‖−→p2 −−→p1‖, and one may seek its expected
value.

Since circles are symmetric, without loss of gener-
ality we can align the coordinate system parallel to
the cut and consider only horizontal chords that lie in
the circle’s upper half, i.e., when both −→p1 and −→p2 have
identical positive coordinates, as in Fig. 4A. If we now
assume (w.l.o.g) that φ2 > φ1, then Θi = φ2−φ1 is the
central angle of the cut and therefore li = 2 sin(Θi/2).
Since Θi ∼ U(0, π), it follows that the expected length
of a unit circle cut is

E[li] =

∫ π

0

li(t) · fΘi(t)dt

=

∫ π

0

2 sin(
t

2
)

1

π
dt =

4

π
≈ 1.273 .

(21)

3.2. Probability and total number of cut intersec-
tions

Given two uniformly distributed cuts c1 and c2,
one may seek the probability of their intersection.
This question is interesting for understanding how
the number of pieces grows with the number of cuts,
as intersecting cuts contribute more pieces than non-
intersecting ones. Again, for symmetry, we can assume
(w.l.o.g) that one of the cuts, say c1, is horizontal and
lying in the upper half of the circle. Let the central
angle of c1 be Θ1 ∼ U(0, π). c1 divides the circle to
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Θi

ci

p1

p2

c2

Θ1

c1

arc1

arc2

2π − Θ1

c

A B C
Figure 4: Cut length, intersection probability, and expected number of edges. A: A unit circle cut ci with a central angle
Θi can be considered w.l.o.g to be horizontal, leading to an expected length as in Eq.21. B: Two cuts c1 and c2 intersect
if and only if the vertices of the second cut (in green) lie in different arcs (in blue and orange) generated by the first cut (in
red). The probability of that event is expressed in Eq 23. C: The number of edges that emerge from a single cut is one
more than the number of intersections one the cut. Here cut c is intersected 3 times to give rise to 4 edges.

two arcs - arc1 of angle Θ1 and arc2 of angle 2π −Θ1

(See Fig. 4B).
Denoting the vertices of c2 as p1 and p2, we first note

that an intersection between c1 and c2 occurs if and
only if p1 belongs to arc1 and p2 belongs to arc2 (or vice
versa). Seeking the probability of such an event, let
Ic1,c2 be an indicator function for intersection between
c1 and c2. Clearly, this function depends on the extend
(or size) of the two arcs and indeed

P (Ic1,c2 |Θ1) = 2 · P (p1 ∈ arc1|Θ1) · P (p2 ∈ arc2|Θ1)

= 2 · Θ1

2π
· 2π −Θ1

2π

=
Θ1(2π −Θ1)

2π2

(22)

It follows that the expected value for the intersection
event is

E[Ic1,c2 ] = P (Ic1,c2) =

∫ π

0

fΘ1(t) · P (I|Θ1 = t)dt

=

∫ π

0

1

π

t(2π − t)
2π2

dt =
1

3
.

(23)

Hence, somewhat surprisingly, only 1 out of 3 pairs of
random unit circle cuts will intersect.

The total number of intersections for a puzzle of a
cuts is the sum of all pairs of intersecting cuts, that is

Nintersect =
1

2

a∑
i=1

∑
j 6=i

Ici,cj

and the expected number of intersections in puzzles

with a crossing cuts thus becomes:

E [Nintersect] = E

1

2

a∑
i=1

∑
j 6=i

Ici,cj


=

(
a

2

)
E [Ic1,c2 ] =

a(a− 1)

6
.

(24)

3.3. Expected number of edges

Given a crossing cuts puzzle generated by a crossing
cuts, we next wish to express the number of piece edges
in the entire puzzle. This measure is fundamental to
the number of matings and therefore is the substrate
of the computational complexity of reconstruction al-
gorithms.

First observe that each edge is a subset of a some cut
between two consecutive intersections. In particular, if
a cut ci is intersected k times, the number of edges that
emerge from this cut will be k + 1 (See Fig. 4a). To
obtain the total number of edges Nedges in the puzzle
one needs to sum up the edges on all cuts, i.e.,

Nedges =

a∑
i=1

1 +
∑
cj 6=ci

Ici,cj


= a+

∑
ci

∑
cj 6=ci

Ici,cj = a+ 2Nintersect .

(25)

Since Ici,cj is a random function, so is Nedges. We
can therefore seek its expected value, i.e., the expected
number of edges in the entire puzzle:

E[Nedges] = E [2 ·Nintersect] + a

= 2 · a(a− 1)

6
+ a =

a2 + 2a

3
.

(26)
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3.4. Expected average edge length

With the expected number of edges resolved, we can
now seek the expected edge length as the expected ratio
between the accumulated edge lengths to their number.
Fortunately, the former is simply the summed length
of all cuts and thus, if the puzzle constitutes a cuts, we
obtain an average edge length of

lavg =

∑a
i=1 li

Nedges
. (27)

While the expected value of a ratio is not the ratio of
expected values, it is its first order Tylor aproxima-
tion [1], which is enough for our purposes. Thus:

E[lavg] = E

[ ∑
li

Nedges

]
≈ E [

∑
li]

E [Nedges]
=

12

π(a+ 2)
(28)

which conforms well with our empirical results shown
in Fig5B. The second order Taylor approximation is

E[lavg] = E

[ ∑
li

Nedges

]
≈ E [

∑
li]

E [Nedges]︸ ︷︷ ︸
First order terms

− Cov(
∑
li, Nedges)

(E[Nedges])2
+
V ar(Nedges) · E [

∑
li]

(E[Nedges])3︸ ︷︷ ︸
Second order term

(29)

where the two second order terms are always compara-
ble in size and tend to cancel each other to a diminish-
ing sum, thus facilitating the approximation in Eq. 28
as also exemplified in Fig. 5B.

3.5. Maximum and expected number of pieces

One of the significant properties of a jigsaw puzzles
that clearly affects the complexity of their representa-
tion (and thus of possible solutions) is its number of
pieces. Clearly, even if the number of crossing cuts
is set, different cut patterns can create puzzles with
varying number of pieces. To estimate this number,
and inspired by Moore [3], we use Euler’s Formula for
planar graphs:

Theorem 1 (Euler’s Formula) If G = (V,E) is
any planar graph, then G has |E| − |V | + 2 regions
where |E| is the number of links in the graph and |V |
is the number of nodes.

Note that in our crossing cuts puzzle case, the number
of nodes for Euler’s formula is the number of inner

intersections (Nintersect) plus the intersection of the
cuts with the puzzle boundary (2a), while the number
of links is the number of edges (Nedges) plus the number
of piece sides generated by the cuts in the boundary
(2a). Using Euler’s formula, and applying Eq. 25, we
thus get

Npieces = (Nedges + 2a)︸ ︷︷ ︸
|E|

− (Nintersect + 2a)︸ ︷︷ ︸
|V |

+2− 1

= Nintersect + a+ 1

(30)

Note that the subtraction of 1 is required since Eu-
ler’s formula also counts the region outside the puz-
zle/graph.

With this in mind, we next observe that one ex-
treme case are puzzles where no cut intersect others
(Nintersect = 0) and thus Npieces = a + 1 pieces. At
the other extreme, every cut intersects all other, yield-
ing

(
a
2

)
intersections and the following quadratic upper

bound on the number of pieces

max
ci,...ca

Npieces =

(
a

2

)
+ a+ 1 =

a2

2
+
a

2
+ 1 (31)

However, with Nintersect being a random variable (that
depends on the random cuts), it is more interesting to
examine the expected number of pieces:

E [Npieces] = E[Nintersect] + a+ 1

=
a(a− 1)

6
+ a+ 1 =

a2

6
+

5a

6
+ 1 .

(32)

This behavior can also be verified empirically, as shown
in Fig. 5A. As the number of cuts increases, and when
a→∞, the ratio between the expected and the maxi-
mum number of pieces becomes

lim
a→∞

E[Npieces]

maxNpieces
=

1

3
(33)

which is the same as the probability for cut intersection
found in Sec. 3.2.

3.6. Expected number of edges per piece

Ae discussed in Sec. 2 in the main paper, the cross-
ing cuts puzzle model cuts the puzzle shape into convex
polygonal pieces. Clearly, these pieces can have differ-
ent number of edges and there is no a-priori inherent
limit to this number (except the number of cuts, of
course).

To explore this property we conducted an empirical
evaluation using 30 synthesized crossing cuts puzzles
for each of the different number of cuts tested (see the

7
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Figure 5: Selected empirical properties of crossing cuts puzzles. A: Number of puzzle pieces with growing number of cuts,
compared to the theoretical behavior (Eq. 30). Error bars are ±1 SE. B: Average edge length with growing number of
cuts, compared to the theoretical behavior (Eq. 28). Error bars are ±1 SE. C: Expected ratios of pieces with a particular
number of edges as a function of the number of crossing cuts. Note how quadrilaterals are always the majority, followed
closely by triangular pieces and the less frequent pentagons. These three classes of polygons quickly converge to account
for approximately 95% of all pieces.Note how ratios remain invariant to the number of cuts. D: The average number of
potential mates as a function of noise level. Each graph shows the potential number of mates that satisfy both C̃1 and C̃2.
The rapid growth indicates the harmful effect of noise, and the numbers converge to twice the number of edges (dashed
horizontal lines) since each mating is counted twice, one for each of its participating edges.

Supplementary materials). Empirically, the most fre-
quent pieces are quadrilateral, and the probability to
encounter pieces with more than 5 edges is approxi-
mately 5% and diminishing quickly. The results are
shown in Fig. 5C and demonstrate that the distribu-
tion remains relatively stable for increasing number of
cuts.

3.7. Number of potential mates per edge

Since any reconstruction algorithm will seek to
match the edge of a given piece to edges of other pieces,
the complexity of such algorithm will relate intimately
to the number of potential mates each edge may have.
Clearly, the higher the number of potential mates, the
more difficult the identification of the correct one is
likely to be. Following the discussion in Sec. 1, this
number of potential mates is determined by the two
mating constraints C̃1 and C̃2 and it is naturally af-
fected by the level of the noise. In fact, a naive exten-

sion of the initial algorithm from Sec. 3, that incorpo-
rates backtracking when wrong matings are identified,

will grow intractably by a factor of O
(
ka

2
)

if the num-

ber of potential mates per edge is k.

We explored the expected average number of mates
empirically by synthesising puzzle with different num-
bers of crossing cuts and levels of noise. We counted
the average number of possible matings for each puz-
zle while employing C̃1 and C̃2. Not unexpectedly, the
results shown in Fig. 5D indicate that the noise level
drastically affects the number of potential mates. Ob-
serve for example how puzzles with 20 crossing cuts
and noise level of 1% generate 100 potential mates per
edge.This figure grows two orders of magnitude (close
to 10,000) in puzzles with 100 crossing cuts. Here it
is worth re-emphasizing that the noise levels in our
model are measured relative to the puzzle size, or di-
ameter. Thus, considering also the average edge length

8



(cf. Sec. 3.4), ξ noise level is comparable to 4·ξ·π(a+2)
12

of average edge length. For a puzzle of 20 crossing cuts
(84 pieces on average) and noise level of 1%, the noise
is ≈ 10% of the edge length.

Indeed, the high number of potential mates in the
presence of noise suggest a similarly high branching fac-
tor in a naive “search and backtrack” algorithm, which
will clearly become intractable for handling noisy (i.e.,
realistic) crossing cuts puzzles, even with just mod-
est number of cuts. Our goal is to seek heuristics that
make the reconstruction more manageable after all, but
at the same time we note that while in this paper we
indeed address only apictorial crossing cuts puzzles, fu-
ture research on pictorial content, where pictorial con-
straints can significantly limit the number of potential
mates, is critical for successful yet efficient crossing cuts
puzzle solvers.

4. Additional experimental results and
visualizations

In addition to the quantitative results in the pa-
per, we provide visual demonstrations for the recon-
struction process, including the use of the physical
spring-mass formulation, the formation of loops, and
the merging process, all depicted as animations in video
files. The files provided are listed in the in Table 1 be-
low. Note that in all cases the animations are timed
for visual convenience and do not represent the actual
running times that are listed in the table.
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File name Description Running time

positioning.mp4 A demo of the spring-mass po-
sitioning mechanism while it
is acting upon hundreds (439)
pieces corrupted with significant
level of noise (5% of puzzle di-
ameter, and more than 50% of
average edge length).

Positioning: 1.26s

reconstruction0.mp4 A demo of the full reconstruction
process for a puzzle of 10 cuts, 40
pieces, ξ = 0.1%, and ξ̄ = 1%.

Locate loops : 1e-3s
Score loops : 8e-4s
Merge loops : 3e-5s
Positioning: 9e-5s

reconstruction1.mp4 A demo of the full reconstruction
process for a puzzle of 8 cuts, 21
pieces, ξ = 0.1%, and ξ̄ = 1%.

Locate loops : 1e-3s
Score loops : 5e-3s
Merge loops : 8e-5s
Positioning: 9e-5s

reconstruction2.mp4 A demo of the full reconstruction
process for a puzzle with a signif-
icant level of noise. The puzzle is
of 6 cuts, 19 pieces, ξ = 1%, and
ξ̄ = 8%.

Locate loops : 2e-3s
Score loops : 2.6s
Merge loops : 1e-3s
Positioning: 1e-4s

reconstruction3.mp4 A demo of the full reconstruction
process for a larger puzzle of of
35 cuts, 400 pieces, ξ = 0.01%,
and ξ̄ = 0.6%.

Locate loops : 1.87s
Score loops : 39s
Merge loops : 1e-2s
Positioning: 1e-3s

Table 1: Description of video files.
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