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Figure S1: Kendall’s Tau results by TCC.

In this supplementary material, we first present results
on a subset of 11 actions of Penn Action in Sec. 1 and fine-
grained frame retrieval results on IKEA ASM in Sec. 2. We
then show training-from-scratch results in Sec. 3 and abla-
tion results of α, σ, and p in Sec. 4. Next, in Sec. 5 we show
results of combining LAV with TCC and TCN while we
show results on a recent frame-shuffling method in Sec. 6.
Moreover, we visualize our embeddings and provide our la-
bels for Penn Action in Secs. 7 and 8 respectively. Finally,
we describe our additional implementation details in Sec. 9.

1. Results on a Subset of 11 Actions of Penn
Action

Among the 3 datasets that we use in Sec. 5 of the main
paper (i.e., Pouring, Penn Action, and IKEA ASM), we no-
tice that for Penn Action while TCC performs well on most
actions, it struggles on 2 actions i.e., Baseball Swing and
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(a) Baseball Swing

(b) Tennis Forehand

Figure S2: Example alignment errors by TCC. On the left
is the reference frame in one video, and on the right is the
aligned frame in another video by TCC (i.e., via nearest
neighbor search in the embedding space). The frame on the
left is among the beginning frames, while the frame on the
right in among the ending frames. TCC incorrectly aligns
them together due to their similar appearances/poses.

Tennis Forehand. As we can see in Fig. S1, the Kendall’s
Tau results by TCC on the above 2 actions (red and orange
curves) do not go higher than ∼ 0.2, which hurts its overall
performance on Penn Action in Tabs. 2-4 of the main paper.
This might be due to the fact that the beginning and ending
frames of the above 2 actions are visually similar, and TCC



Method Classification Progress τ

Pe
nn

A
ct

io
n SAL [4] 82.03 0.7054 0.7783

TCN [5] 82.99 0.7281 0.8275
TCC [2] 83.94 0.7394 0.8001
LAV (Ours) 84.47 0.6654 0.8149
LAV+TCC (Ours) 84.14 0.7111 0.7892

Table S1: Phase classification, phase progression, and
Kendall’s Tau results on a subset of 11 actions of Penn Ac-
tion. Best results are in bold, while second best ones are
underlined.

Method AP@5 AP@10 AP@15

Pe
nn

A
ct

io
n SAL [4] 76.83 76.52 76.35

TCN [5] 78.09 77.74 77.52
TCC [2] 79.49 79.19 79.00

LAV (Ours) 79.34 79.23 79.08
LAV + TCC (Ours) 79.29 79.15 79.03

Table S2: Fine-grained frame retrieval results on a subset of
11 actions of Penn Action. Best results are in bold, while
second best ones are underlined.

does not have an explicit mechanism to avoid aligning the
beginning frames with the ending ones and vice versa (see
Fig. S2 for examples). Other self-supervised methods, i.e.,
SAL, TCN, and LAV, do not suffer from the above prob-
lem as TCC, since they leverage temporal order informa-
tion, i.e., SAL performs temporal order verification, TCN
uses temporal coherence, while LAV exploits both tempo-
ral coherence and dynamic time warping prior. Also, the
above problem for TCC might be alleviated by tuning the
number of context frames and context stride, however, that
requires further exploration.

For completeness, we filter out the results of the above 2
actions from Tabs. 2-4 of the main paper, and present the re-
sults of the remaining 11 actions of Penn Action in Tabs. S1
and S2. From the results, the performance of TCC is im-
proved significantly when excluding the above 2 actions.
In Tab. S1, TCC has competitive numbers with TCN and
LAV (e.g., TCC performs the best on progression, while
TCN and LAV perform the best on Kendall’s Tau and clas-
sification respectively). In Tab. S2, TCC and LAV have
very competitive numbers (e.g., TCC slightly outperforms
LAV for AP@5, while LAV marginally outperforms TCC
for AP@10 and AP@15), outperforming SAL and TCN.

Method AP@5 AP@10 AP@15

IK
E

A
A

SM

SAL [4] 15.15 14.90 14.72
TCN [5] 19.15 19.19 19.33
TCC [2] 19.80 19.64 19.68

LAV (Ours) 23.89 23.65 23.56
LAV + TCC (Ours) 22.95 22.80 22.70

Table S3: Fine-grained frame retrieval results on IKEA
ASM. Best results are in bold, while second best ones are
underlined.

Method Classification Progress τ

Po
ur

in
g SAL [4] 85.86 0.6422 0.7329

TCN [5] 85.98 0.6732 0.7500
TCC [2] 88.59 0.7104 0.7774
LAV (Ours) 87.70 0.7320 0.7867

Table S4: Training-from-scratch results on Pouring. Best
results are in bold, while second best ones are underlined.

2. Fine-Grained Frame Retrieval Results on
IKEA ASM

We now conduct fine-grained frame retrieval experi-
ments on IKEA ASM and report the quantitative results of
different self-supervised methods in Tab. S3. It is evident
from the results that LAV consistently achieves the best per-
formance across different values of K, outperforming other
methods by significant margins. For example, for AP@5,
LAV obtains 23.89%, while TCC, TCN, and SAL get
19.80%, 19.15%, and 15.15% respectively. Furthermore,
the combined LAV+TCC leads to significant performance
increase over TCC. For instance, for AP@5, LAV+TCC
achieves 22.95%, while TCC obtains 19.80%. The above
observations on IKEA ASM are similar to those on Penn Ac-
tion and Pouring reported in Sec. 5.4 of the main paper,
confirming the utility of our self-supervised representation
for fine-grained frame retrieval.

3. Training-from-Scratch Results

All of the experiments in Sec. 5 of the main paper uti-
lize an encoder network initialized with pre-trained weights
from ImageNet classification. For completeness, we now
experiment with learning from scratch. We use a smaller
backbone network, i.e., VGG-M [1], (instead of ResNet-50)
for this experiment. Tab. S4 shows the quantitative results
of different self-supervised methods when learning from
scratch on Pouring. It can be seen from Tab. S4 that the
performance of all methods drops as compared to Tabs. 2
and 3 of the main text. Moreover, SAL and TCN are infe-
rior to TCC and LAV across all metrics. Lastly, although



Method Classification Progress τ

Pe
nn

A
ct

io
n SAL 64.05 0.2989 0.4145

TCN 60.17 0.1909 0.4260
TCC 65.53 0.4304 0.4529
LAV (Ours) 67.90 0.3853 0.4929

Table S5: Training-from-scratch results on Penn Action.
Best results are in bold. Second best results are underlined.

Figure S3: Ablation results of α in (a), σ in (b), and p in
(c) on Pouring. We convert classification results from % to
[0, 1].

LAV has slightly lower classification accuracy than TCC,
LAV outperforms TCC on both progression and Kendall’s
Tau.

Next, Tab. S5 shows training-from-scratch results on
Penn Action, using a single joint model for all actions (sim-
ilar as Sec. 5.5 of the main paper). For all methods, the per-
formance in Tab. S5 is lower than Tab. 5 of the main text.
Also, SAL and TCN are inferior to TCC and LAV. TCC per-
forms the best on progression, while LAV performs the best
on the other two metrics.

Finally, we obtain training-from-scratch results on IKEA
ASM, which show LAV achieves the best performance (i.e.,
for classification, 23.84 for LAV vs. 22.04, 20.45, and 20.42
for TCC, TCN, and SAL respectively).

4. Ablation Results of α, σ, and p
We first present ablation results of α on Pouring in

Fig. S3(a). We observe that the performance is generally
stable across values of α, and α = 1.0 yields the best re-
sults. Next, Figs. S3(b) and S3(c) illustrate ablation results
of σ and p respectively on Pouring. From the results, the
performance is generally stable across values of σ and p.
Particularly, σ = 15 performs the best, and large p is pre-
ferred.

5. Performance of LAV+TCC and LAV+TCN
We note that LAV+TCC does not consistently perform

better than LAV in Tabs. 2 and 3 of the main paper. This
might be attributed to the fact that LAV works on L2-
normalized embeddings while TCC does not. Since the two
components operate on different embedding spaces, com-

bining the two might not always lead to better results.
In addition, we evaluate LAV+TCN on Pouring. We

notice LAV+TCN suffers from the same problem as
LAV+TCC (i.e., normalized/unnormalized embeddings).
LAV+TCN obtains 91.22, 0.7866, and 0.7925 for classifi-
cation, progression, and Kendall’s Tau respectively, which
are comparable to TCN but lower than LAV.

6. Performance of a Recent Frame-Shuffling
Method

We evaluate the clip order prediction (COP) method of
Xu et. al. [6] on Pouring. As it is a clip-based method, we
use sliding windows to generate embeddings for frames at
window centers. As mentioned in Sec. 4 of the main pa-
per, the network is first trained for the pretext task and then
frozen while we train SVM classifier/linear regressor for the
main tasks. It achieves 79.44, 0.5309, and 0.6656 for classi-
fication, progression, and Kendall’s Tau respectively, which
are lower than SAL in Tabs. 2 and 3 of the main paper. This
is likely because the pretext task (i.e., COP) is clip-based,
whereas the main tasks are frame-based and require cap-
turing fine-grained frame-based details. Further, since we
freeze the network while training SVM classifier/linear re-
gressor, it could not disregard irrelevant clip-based details
to focus on the one frame that matters.

7. Visualization of Embeddings
We present the t-SNE visualization [3] of the embed-

dings learned by LAV on 3 example actions of Penn Action
in Fig. S4. For each action, we show 4 videos with each
plotted using a unique color. In addition, we use differ-
ent shades of the same color to distinguish different frames
of the same video, i.e., beginning frames have light shades,
while later frames have progressively darker shades. The vi-
sualization in Fig. S4 shows that LAV encodes each video as
an overall smooth trajectory in the embedding space, where
temporally close frames are mapped to nearby points in the
embedding space and vice versa. Moreover, corresponding
frames from different videos are generally aligned in the
embedding space, e.g., points of different colors but similar
shades are nearby in the embedding space and vice versa.
We also sample one random time-step (highlighted by a
black circle), and plot corresponding frames from different
videos (each bordered by a distinct color), which are shown
to belong to the same action phase. The above observations
show the potential application of our self-supervised repre-
sentation for temporal video alignment.

8. Labels for Penn Action
We have made our dense per-frame labels for 2123

videos of Penn Action publicly available at https://
bit.ly/3f73e2W. Please refer to Tab. 2 of TCC for



Hyperparameter Value

# of sampled frames (p) 40 (P), 20 (PA, IA)
Batch size 1 (P), 2 (PA, IA)
Learning rate 10−4

Weight decay 10−5

Soft-DTW smoothness (γ) 0.1
Window size (σ) 15 (P, IA), 7 (PA)
Margin (λ) 2
Regularization weight (α) 1.0 (P), 0.5 (PA, IA)
# of context frames (k) 1
Context stride 15 (P, PA), 8 (IA)

Table S6: Hyperparameter settings for LAV. Here, P de-
notes Pouring, PA represents Penn Action, and IA denotes
IKEA ASM. For batch size, 1 means 1 pair of videos (or 2
videos per batch).

more details on actions, numbers of phases, lists of key
events, and numbers of videos for training and validation.

9. Implementation Details
For fair evaluations, we use the same data augmenta-

tion techniques and encoder networks for all the compet-
ing methods. More specifically, we follow the same data
augmentation procedures and borrow the encoder networks
from TCC [2]. Please refer to the supplementary material of
TCC for more details on data augmentation techniques and
encoder networks. In addition, we list the hyperparameter
settings for our method in Tab. S6. For other methods, we
use the same hyperparameter settings suggested by TCC.
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(a) Baseball Pitch

(b) Bowling

(c) Jumping

Figure S4: Visualization of embeddings for LAV.


