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Figure 1: POSA automatically places 3D people in 3D scenes such that the interactions between the people and the scene
are both geometrically and semantically correct. POSA exploits a new learned representation of human bodies that explicitly
models how bodies interact with scenes.

Appendices
A. Training Details

The global orientation of the body is typically irrele-
vant in our body-centric representation, so we rotate the
training bodies around the y and z axes to put them in a
canonical orientation. The rotation around the x axis, how-
ever, is essential to enable the model to differentiate be-
tween standing up and lying down. The semantic labels
for the PROX scenes are taken from Zhang et al. [9], where
scenes were manually labeled following the object catego-
rization of Matterport3D [1], which incorporates 40 object
categories.

Our encoder-decoder architecture is similar to the one
introduced in Gong et al. [2]. The encoder consists of
3 spiral convolution layers interleaved with pooling layers
3 × {Conv (64)→ Pool (4)} → FC (512). Pool stands for
a downsampling operation as in COMA [7], which is based

on contracting vertices. FC is a fully connected layer and
the number in the bracket next to it denotes the number of
units in that layer. We add 2 additional fully connected lay-
ers to predict the parameters of the latent code, with fully
connected layers of 256 units each. The input to the encoder
is a body mesh Mb where, for each vertex, i, we concate-
nate V i

b vertex positions, and f vertex features. For compu-
tational efficiency, we first downsample the input mesh by
a factor of 4. So instead of working on the full mesh res-
olution of 10475 vertices, our input mesh has a resolution
of 655 vertices. The decoder architecture consists of spi-
ral convolution layers only 4×{Conv (64)} → Conv (Nf ).
We attach the latent vector z to the 3D coordinates of each
vertex similar to Kolotouros et al. [5].

We build our model using the PyTorch framework. We
use the Adam optimizer [4], batch size of 64, and learning
rate of 1e−3 without learning rate decay.



Figure S.1: Random samples from our trained cVAE for the same pose. For each example we show from left to right: fc and
fs. The color code is at the bottom. For fc, blue means contact, while pink means no contact. For fs, each scene category
has a different color.

B. SDF Computation

For computational efficiency, we employ a precomputed
3D signed distance field (SDF) for the static scene Ss, fol-
lowing Hassan et al. [3]. The SDF has a resolution of
512× 512× 512. Each voxel cj stores the distance dj ∈ R
of its centroid Pj ∈ R3 to the nearest surface point Ps ∈ Ss.
The distance dj has a positive sign if Pj lies in the free space
outside physical scene objects, while it has a negative sign
if it is inside a scene object.

C. Random Samples

We show multiple randomly sampled feature maps for
the same pose in Fig. S.1. Note how POSA generate a va-
riety of valid feature maps for the same pose. Notice for
example that the feet are always correctly predicted to be
in contact with the floor. Sometimes our model predicts the
person is sitting on a chair (far left) or on a sofa (far right).

The predicted semantic map fs is not always accurate as
shown in the far right of Fig. S.1. The model predicts the
person to be sitting on a sofa but at the same time predicts
the lower parts of the leg to be in contact with a bed which
is unlikely.

D. Affordance Detection
The complete pipeline of the affordance detection task

is shown in Fig. S.2. Given a clothed 3D mesh that we
want to put in a scene, we first need a SMPL-X fit to the
mesh; here we take this from the AGORA dataset [6]. Then
we generate a feature map using the decoder of our cVAE
by sampling P (fGen|z, Vb). Next we minimize the energy
function in Eq. 1.

E(τ, θ0) = Lafford + Lpen (1)

Finally, we replace the SMPL-X mesh with the original
clothed.

We show additional qualitative examples of SMPL-X
meshes automatically placed in real and synthetic scenes in
Fig. S.4. Qualitative examples of clothed bodies placed in
real and synthetic scenes are shown in Fig. S.5. We show
qualitative comparison between our results and PLACE [8]
in Fig. S.6.

E. Failure Cases
We show representative failure cases in Fig. S.3. A com-

mon failure mode is residual penetrations; even with the
penetration penalty the body can still penetrate the scene.
This can happen due to thin surfaces that are not captured



Figure S.2: Putting realistic people in scenes. Pipeline of affordance detection using meshes with clothing. SMPL-X acts as
a proxy for the clothed scan. POSA is used to sample features for this pose. These features are then used with the scene mesh
to optimize the placement of the body. After convergence, we simply replace SMPL-X with the clothed scan.

Figure S.3: Failure cases.

by our SDF and/or because the optimization becomes stuck
in a local minimum. In other cases, the feature map might
not be right. This can happen when the model does not gen-
eralize well to test poses due to the limited training data.

F. Effect of Shape
Fig. S.7 shows that our model can predict plausible fea-

ture maps for a wide range of human body shapes.

G. Scene population.
In Fig. S.8 we show the three main steps to populate a

scene: (1) Given a scene, we create a regular grid of can-
didate positions (Fig. S.8.1). We place the body, in a given
pose, at each candidate position and evaluate Eq. 10 once.
(2) We then keep the 10 best candidates with the lowest
energy (Fig. S.8.2), and (3) iteratively optimize Eq. 10 for
these; Fig. S.8.3 shows results at three positions, with the
best one highlighted with green.
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Figure S.4: Qualitative examples of SMPL-X meshes automatically placed in real and synthetic scenes. The body shapes and
poses were not used in training.
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Figure S.5: Clothed bodies (from Renderpeople) automatically placed in real and synthetic scenes.



Figure S.6: Qualitative examples from POSA (pink) and PLACE [8] (silver).

Figure S.7: Generated feature maps for various body shapes.

Figure S.8: Main steps of our method for scene population. (1) Grid with all candidate positions. (2) The 10 best positions.
(3) Final result.


