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A. Content

In these supplementary materials we describe in further
detail aspects of the dataset and the training process and per-
formance of the tested methods. Specifically, the following
will be described:

* Additional examples from the Sewer-ML dataset (Sec-
tion B).

* Further insights into the Sewer-ML dataset (Sec-
tion C).

 Full training details and metric performance for the
Faster-RCNN text detector (Section D).

 Full details on the Extra Trees hyperparameter grid
search (Section E).

¢ The loss curves of the trained multi-label classification
methods (Section F).

* Ablation study of the two-stage methods (Section G).

* Results when evaluating using the common multi-label
performance metrics (Section H).

B. Sewer-ML Dataset Examples

In this section we present more examples of the images
in the Sewer-ML dataset. All images are annotated using
the Danish inspection standard containing 18 classes [3],
listed in Table 1. In Figure 1 we present examples of dif-
ferent cases with several co-occurring classes. In Figure 12
we present five examples of each class, where only the men-
tioned class is present.

C. Sewer-ML Dataset Insights

In this section, we describe the available information in
the Sewer-ML dataset in more detail. First, we report the
number of occurrences for each class in the dataset splits,
see Table 2, where it is observed that the distribution of the
classes is similar across the different splits.

Table 1: Sewer inspection classes. Overview and short
description of each annotation class [3].

Code | Description

VA Water Level (in percentages)
RB Cracks, breaks, and collapses
OB Surface damage

PF Production error

DE Deformation

FS Displaced joint

IS Intruding sealing material
RO Roots
IN Infiltration

AF Settled deposits
BE Attached deposits
FO Obstacle

GR Branch pipe

PH Chiseled connection

PB Drilled connection

oS Lateral reinstatement cuts

)3 Connection with transition profile

OK Connection with construction changes

Moreover, we look into the pipe properties associated
with each image. Each image contains information on the
pipe shape, material, dimension, and water level.

In Figure 2 we plot the distribution of the eight different
pipe material types for the images in each split. We find
that the concrete, vitrified clay, plastic, and lining materials
are the most common materials in the Sewer-ML dataset.
We also observe that all material types are equally repre-
sented across the splits, except for the “Brickwork” and
“Unknown” material types. The reason these material types
are skewed for the validation and test sets, is due to these
materials being rarely used anymore, and therefore rarely
occur in the sewer inspection videos. Therefore, the images
containing these material types are from a small subset of
pipes, which were not evenly spread out across the splits.

In Figure 3 we plot the distribution of the six different
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Figure 1: Sewer-ML data examples with co-occurring classes. A subset of the images in the Sewer-ML showcasing images
with multiple classes co-occurring and all annotated classes represented. The class codes are described in Table 1.

Table 2: Class occurrences per split. The number of occurrences for each class per dataset split.

Split RB OB PF DE FS IS RO IN AF BE FO GR PH PB 0s oP OK Normal
Training 45,821 184,379 16,254 19,084 283983 6,271 22,637 23,782 74,856 66,499 5,010 53986 23,685 6,746 4,625 5325 154,624 552,820
Validation | 5,538 23,624 2,021 2,038 36,218 881 2917 2,812 9,059 7,929 597 6,889 3432 765 457 612 19,655 68,681
Test 5501 23264 1,949 2,307 35781 924 2,684 3235 9,182 8,720 649 6,726 2,962 833 530 533 19420 69,221
Total 56,860 231,267 20,224 23429 355982 8,076 28,238 29,829 93,097 83,148 6,256 67,601 30,079 8344 5612 6,470 193,699 690,722

pipe shapes for the images in each of the dataset splits.
We find that the circular type is by far the most common
pipe shape, followed secondly by conical pipes, whereas
the remaining pipe shapes only appear a few thousand times
each. As with the pipe material, we see that distribution of
pipe shapes are similar between dataset splits, except for
the “Eye shaped”, “Rectangular”, and “Other” pipe shapes.
This is again due to these pipe shapes occurring in a limited

set of sewer inspections, and have therefore not been evenly
divided across the splits.

In Figure 4 we plot the occurrences of the pipe dimen-
sions associated with each image. The dimension is denoted
in millimeters, as per the industry standard. We see that the
majority of images are from pipes with a diameter of 100-
1,000 millimeters, with a skew towards 100 millimeters. We
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Figure 2: Distribution of the pipe materials. We plot the
occurrence frequencies for each of the eight pipe materials
in the dataset, for each dataset split. Note that the y-axis is
log-scaled.
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Figure 3: Distribution of the pipe shapes. We plot the
occurrence frequencies for each of the six pipe shapes in
the dataset, for each dataset split. Note that the y-axis is
log-scaled.

observe that the distribution of the pipe dimension for the
training, validation, and test splits appears to be similar in
shape, as expected.

In Figure 5 we plot the distribution of the different water
level classes for each data split. We find that the distribution
of the water level classes is similar across the three dataset
splits We also observe that the majority of the images have
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Figure 4: Distribution of the pipe dimensions. Plots of
the occurrence frequencies of each pipe dimension, for each
dataset split. Note that both axes are log-scaled.
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Figure 5: Distribution of the water level. We plot the oc-
currence frequencies for each of the water level classes, for
each dataset split. Note that the y-axis is log-scaled.

an associated water level in the range 0-30 %, while the
remaining classes occur less often, and not as evenly split
between the classes. This can be explained by the fact that
when the majority of a pipe is filled with water, the inspec-
tions may at times be postponed for a later time and it be-
comes difficult to accurately access how much water it ac-
tually contains. Furthermore, the inspection vehicle will at
times be partially or fully submerged in the water, resulting
in the inspector losing key reference points used for esti-
mating the water level, such as the pipe wall.

Lastly, in Figure 6 we plot the resolution of the sewer
inspection videos in each split. The resolution is denoted
as width by height. It should be noted that the video res-
olutions reported are not the resolutions observed by the
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Figure 6: Distribution of video resolution. We present
the distribution of the different resolutions for the videos in
each dataset split. Note the y-axis is log-scaled.
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Figure 7: Distribution of image resolution. We present
the distribution of the different resolutions for the images in
each dataset split. Note the y-axis is log-scaled.

inspector. The videos are encoded in such a way that the
video data is stored in the resolution reported in this work,
but when presented using a media player the width is mul-
tiplied by a “sample aspect ratio”. We decide not to apply
this resizing, in order to not introduce artifacts in the image
data. We find that across the videos in each dataset split, the
resolutions are evenly distributed. This is also true when
looking at the resolution for all the images in the dataset
splits, see Figure 7.
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Figure 8: Training split bounding box information. The
training split bounding box annotations are plotted with the
bounding box area against the bounding box ratio.

D. Faster-RCNN Training and Metric Details

In this section we detail the hyperparameters and training
settings for the Faster-RCNN [15] model we use to redact
overlaid text information on the images. We also present the
full COCO [ 1] metric suite performance, to show how well
the network performs. A training split of 20,739 images and
a validation split of 2,305 images are used, wherein all text
information is manually annotated with bounding boxes.

Hyperarameters. The Faster-RCNN model is trained
for 26 epochs with a batch size of 16 batches. An SGD
optimizer with momentum is used, with a learning rate of
0.02, momentum of 0.9 and weight decay of 0.0001. The
learning rate is multiplied by 0.1 at epoch 16 and 22, re-
spectively. We employ linear warm up of the learning rate
during the first 1,000 mini batches of the first epoch, in-
creasing the learning rate from 1072 to 0.02. The back-
bone is a ResNet-50 FPN [7, 10] pre-trained on ImageNet
[17], of which we fine-tune the last three residual blocks.
Custom anchor boxes are used, with a bounding box ra-
tios (height over width) of 1:8, 1:4 and 1:2, and bounding
box scales with areas of 322, 642, 1282, 2562, and 5122.
These values are determined based on the bounding box in-
formation in the training split, see Figure 8. All images are
normalized using the ImageNet per channel mean and stan-
dard deviation, and horizontal flipping with a 50% chance is
used during training. The images are rescaled such that the
shortest side is 800 pixels, while enforcing that the largest
side is no larger than 1,333 pixels. The training loss and
mAP[0.5:0.95] on the validation set are plotted in Figure 9.



Table 3: Full COCO metric suite. The performance of the trained Faster-RCNN model on the validation set, for different

Average Precision (AP) and Average Recall (AR) settings.

AP, IoU: AP@[0.5:0.95], Area: | AR@[0.5:0.95], #Dets: | AR@[0.5:0.95], Area:
0.5:095 0.5 0.75 S M L 1 10 100 S M L
89.10  98.89 96.39 | 88.08 89.96 95.63 | 10.06 8831 9225 | 91.72 9271 96.28
Faster-RCNN Training Table 4: Extra Trees grid search intervals. Hyperparame-
ter search intervals for the Extra Trees classifiers. d denotes
o4 the dimensionality of the GIST descriptor.
a Parameter Values
5’ 0.3 1 Number of Trees [10, 100, 250]
g Max Depth [10, 20, 30]
E 0.2 - Max Features [Vd, log,(d), d/3]
0.1 A
T T T T T ters: The amount of trees in the ensemble, the maximum
depth of the trees, and the maximum amount of features
used when splitting an internal node. The investigated pa-
88 rameters are reported in Table 4. We train the Extra Trees
g 86 4 classifier in three settings. First, we train under a binary
% setting determining whether there is any class in the im-
g 841 age. Thereafter, we train a multi-label setting, first on a
2 82 subset of the dataset only containing images with annotated
§ 80 4 classes, and secondly on the full dataset. The resulting vali-
S dation losses of the hyperparameter search is shown in Fig-
781 ure 10. From this we conclude that for the binary Extra
76 T T T T . Trees classifier 100 trees, with a maximum depth of 10 and

Epoch

Figure 9: Faster-RCNN loss and metric curves. The train-
ing loss and validation metrics for the trained Faster-RCNN
model. mAP@[0.5:0.95] is denoted as mAP.

Metrics. In order to determine the effect of the Faster-
RCNN model, we compute the full COCO metrics suite on
the validation set, as shown in Table 3. As shown in the
metrics, we have a high precision and recall, though the re-
call indicates that not all of the text objects have been de-
tected. This is partially due to some text information being
annotated with a single bounding box but detected as sev-
eral boxes, and vice versa. To verify the annotations we
manually inspect a set of randomly selected samples.

E. Extra Trees Hyperparameter Grid Search

For the system proposed by Myrans et al. [13, 14], two
Extra Trees classifiers are used in sequence. However, the
hyperparameters of the trees are not specified. Therefore,
we conduct a small grid search across three hyperparame-

using log, (d) features when splitting, should be used. Sim-
ilarly, we find that for the multi-label Extra Trees classifiers
250 trees, with a maximum depth of 10 and using log,(d)
features when splitting, should be used.

F. CNN Loss Curves

We present the loss curves for all the tested convolutional
neural networks (CNNs) tested, see Figure 11. All networks
are trained using the weighted binary cross-entropy loss,
and using hyperparameters set based on the guidelines from
Goyal et al. [5]. Further training details are presented in the
main manuscript.

From the loss plots we observe that the validation loss
of the majority of the tested networks start diverging af-
ter approximately 30-40 epochs, a clear sign of overfitting.
The method by Xie et al. [19] is an exception, with the first
and second stage methods stagnating after 60—70 epochs.
We also observe that the first stage of Chen et al. [1], the
SqueezeNet [8], has a constant loss value for both the train-
ing and validation loss. Similarly, the second stage of Xie er
al. settles on a constant loss after the initial 10 epochs when
trained on the full dataset.
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Figure 10: Extra Trees grid search results. Results of the grid search of the Extra Trees classifiers for: Binary classifier
trained on full dataset, multi-label classifier trained on a subset of the dataset, and multi-label classifier trained on the full

dataset.
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Figure 11: Multi-label CNN loss curves. The training and validation loss curves for all tested networks. “Ist Stage”
indicates a binary classifier, “2nd Stage” indicates a multi-label classifier trained on a subset of the dataset, and “E2E”
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Table 5: Effect of binary stage in two-stage classifiers.
We present the metric performance for the two-stage meth-
ods, comparing the effect of the full pipeline and using only
the multi-label classifier. TS denotes that both stages are
used, otherwise only the second stage is used.

Validation Test
Model s F2CIW T Flnormal T F2CIW T FlNormal T

Xie [19] v 48.57 91.08 48.34 90.62
37.65 0.52 37.83 0.68

Chen [1] v 42.03 3.96 41.74 3.59
42.03 3.96 41.74 3.59

Myrans [13] v 4.01 26.03 4.11 27.48
19.25 0.00 19.19 0.00

Table 6: Effect of training second stage on full dataset.
The metric performance for the two-stage methods, when
training both stages on the full dataset. TS denotes that both
stages are used, otherwise only the second stage is used.

Validation Test

Model | TS '3 8T Flnormat T | F2aw T Flnommat T
Xie [19] v 31.98 88.23 31.82 87.95
28.12 59.98 27.96 59.99
Chen [1] v 43.45 76.73 43.14 75.68
43.45 76.73 43.14 75.68
Myrans [13] v 2.58 25.98 2.61 27.48
7.48 0.00 7.37 0.00

G. Two-Stage Ablation Study

We conduct two ablation studies on the two-stage clas-
sifiers, to determine the effect of the different stages and
training methodology.

What is the effect of the binary classifier? We compare
the effect on performance of using both stages or only the
second stage. These results are presented in Table 5, and
indicate that the first stage is crucial. Performance for Xie
et al. [19] degrades for both metrics when the first stage is
missing, whereas for Chen et al. [1] there is no difference
as the first stage never predicts a normal pipe. For Myrans
et al. [13] the first stage inaccurately classifies images with
classes as normal pipes, causing a lower F2¢w score. This
is improved when using only the second stage, but at the
cost of an inability to recognize any normal pipes.

Training the second stage on the full dataset. Clas-
sically within the sewer classification domain, the second
stage is only trained on data which contains some kind of
class. We investigate whether performance improves by
training on the full dataset, such that the second stage also
sees normal pipes. The results are shown in Table 6. For
Myrans et al. the performance is reduced substantially in
both tested settings, and the second stage is still unable to
classify normal pipes. For Xie et al. both metrics are lower
when comparing to Table 5, except for the large increase
in Fnormal Score when only using the second stage. The

only performance improvement is achieved by Chen et al.
through the use of the deeper InceptionV3 network.

H. Multi-Label Metrics and Results

When evaluating multi-label tasks, a large suite of met-
rics are commonly used, in order to uncover different as-
pects of the tested methods. Commonly, the Fl-score is
used in different variations, depending on how the F1-score
is calculated or averaged. An overview of the different met-
rics is provided in Table 8. Each of the metrics are in the
range [0, 1], and for all a high score is better. As a reference
on how to compute the metrics, we refer to the supplemen-
tary materials of the work by Durand et al. [4]. We present
the classic performance metrics for each of the tested meth-
ods on both the validation and test splits, as well as the per-
class F1, F2, Recall, Precision, and Average Precision (AP).
It should be noted, that AP cannot be calculated for the nor-
mal class. This is due to the normal class being an implicit
class, and therefore not possible to rank as it does not have
a single associated probability. The Kumar et al. [9], Meijer
et al. [12] and ML-GCN [2] methods are not shown in the
metric tables as the models diverged during training. The
benchmark algorithm consisting of the first stage from Xie
et al. [19] and the TResNet-L multi-label classifier [16] is
reported as “Benchmark”. The metrics for the validation
split are presented in Table 9-14 and the metrics for the test
split are presented in Table 15-20.



Figure 12: Sewer-ML data examples. A subset of the images in the Sewer-ML showcasing five images from each of the
annotated classes as well as normal pipes in each row. The class codes are described in Table 1.
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Table 8: Multi-label classification metrics. A short description of the commonly used multi-label classification metrics. For
details on how the metrics are computed, we refer to Durand et al. [4].

Metric Description

Macro-F1 (M-F1) Average F1-score across all classes.

Micro-F1 (m-F1) F1 score calculated over all samples.

Overall Precision (OV-P) Precision metric calculated over all samples, regardless of class.
Overall Recall (OV-R) Recall metric calculated over all samples, regardless of class.
Overall F1 (OV-F1) F1 score calculated using OV-P and OV-R.

Per-class Precision (PC-P) Average precision metric across all classes.

Per-class Recall (PC-R) Average recall metric across all classes.

Per-class F1 (PC-F1) F1-score calculated using PC-P and PC-R.

Zero-one Exact Match Accuracy (0-1)  Ratio of samples with all labels correctly predicted.

mean Average Precision (mAP) Average of the Average Precision of all annotated classes

Table 9: Performance metrics for each method - Validation Split. The metrics are presented as percentages, and the
highest score in each column is denoted in bold.

Model m-F1 M-F1 OV-F1 OV-P OV-R PC-F1 PC-P PC-R 0-1 mAP
Xie etal. [19] 59.33 38.10 5933 4631 8252 4243 29.61 74779 51.64 66.40
E Chenetal. [!] 3394  26.62 3394 2638 47.60 3509 2397 6540 7.96 62.06
&2 Hassan et al. [6] 12.76 6.36 1276 7.44 4486 692 372 50.00 0.00 8.89
Myrans et al. [13] 5.39 3.69 5.39 3.19 17.27 480 290 14.06 13.66 0.54
ResNet-101 [7] 54.47 38.08 5447 40.63 82.62 4358 2898 87.83 3996 7627
s KSSNet[1¢] 56.18  39.37 56.18 4252 8277 4482 30.12 87.56 41.28 77.63
2 TResNet-M [16] 55.27  38.69 5527 4122 83.88  44.14 2935 88.93 41.07 78.29
O  TResNet-L [16] 56.01 39.63 56.01 42.09 83.69 4490 30.10 8832 4122 78.75

TResNet-XL [16] 55.83 39.30 5583 41.82 8398 44.66 2985 88.67 41.68 78.32
Benchmark 61.45 4239 6145 47.02 88.67 4638 3225 8255 51.65 79.79

Table 10: Per-class F1 score - Validation Split. The metrics are presented as percentages, and the highest score in each
column is denoted in bold.

Model RB OB PF DE FS IS RO IN AF BE FO GR PH PB 0S OoP OK Normal
Xieetal. [19] 2297 7140 3583 22.84 7712 9.77 1794 2839 4027 38.09 584 49.03 37.86 2421 13.80 29.03 70.29 91.08
§ Chenetal.[]] 24.60 57.19 17.17 10.08 6837 6.03 31.78 21.05 2671 39.01 533 2526 3427 879 10.10 3234 57.18 3.96
&3 Hassanetal. [0] 0.00 30.75 3.06 3.09 4357 1.35 439 0.00 1302 0.00 000 10.06 514 0.00 000 0.00 0.00 0.00

Myrans et al. [13] 1.61 5.70 1.79 1.07 807 028 053 084 329 256 020 3.07 094 094 028 0.14 9.16 26.03
ResNet-101 [7] 2408 73.10 3046 1847 7944 948 2043 27.80 3992 41.07 450 4741 4062 24.66 18.08 32.83 7352 79.55
KSSNet [15] 2540 73.64 31.52 18.84 80.59 10.56 21.06 28.88 41.11 42.15 482 51.24 43.69 2523 19.28 35.55 74.58 80.60
TResNet-M [16] 2487 7290 30.24 19.72 80.13 10.47 20.16 2831 40.61 4032 4.54 48.04 4408 24.17 1726 35.64 73.80 81.23
TResNet-L [16] 2451 73.14 30.87 19.74 7994 11.57 19.76 2949 4124 4149 474 5031 47.15 28.00 17.88 38.95 7334 81.22
TResNet-XL [16] 2475 73.15 3220 20.58 79.89 1021 19.76 29.09 4030 41.15 4.69 4835 4522 2645 1823 37.08 7457 81.81
Benchmark 2481 7450 36.39 2391 80.69 11.87 20.05 31.19 4239 42.63 494 5140 4853 33.09 21.58 48.75 75.00 91.32

General

Table 11: Per-class F2 score - Validation Split. The metrics are presented as percentages, and the highest score in each
column is denoted in bold.

Model RB OB PF DE FS IS RO IN AF BE FO GR PH PB 0S oP OK Normal
Xie etal. [19] 38.87 77.86 5292 3748 79.78 19.96 3290 4659 5352 5348 12.66 58.74 5649 4044 2637 4751 7698 90.32
§ Chen et al. [1] 38.82 6638 31.00 20.81 73.90 12.77 4333 3370 42.02 4598 11.64 43.15 5273 19.18 20.63 51.75 66.21 2.52
& Hassanetal. [0] 0.00 52,60 732 737 6587 330 1029 000 2724 0.00 000 218 1194 0.00 0.00 0.00 0.00 0.0

Myrans et al. [13] 323 781 4.06 184 959 0.66 1.16 185 595 478 049 5091 203 226 0.69 033 1332 25.93
ResNet-101 [7] 4245 8434 51.08 3534 8749 1998 37.81 4747 59.18 59.87 1039 64.78 61.24 4403 34.81 5423 8299 71.60

T KSSNet[18] 4374 84.64 5224 3592 8745 21776 38.67 4854 5989 60.81 11.08 67.40 6394 4473 36.60 57.05 83.30 72.95
2 TResNet-M [16] 4355 8449 51.02 3723 8779 21.75 37.57 4793 60.01 59.99 1051 6561 6443 43.62 3370 57.04 83.71 73.71
& TResNet-L [16] 43.08 8439 51.75 3739 87.81 2350 37.03 49.20 60.10 60.60 1091 67.05 66.64 4824 3453 60.12 83.59 73.69
TResNet-XL [16] 4334 8444 5299 3850 87.69 2137 37.01 4893 59.79 6042 10.79 6577 6507 4646 35.12 58.61 83.63 74.49
Benchmark 4292 8356 54.06 39.16 8699 2389 37.17 5041 59.64 60.12 1130 6639 6640 50.16 37.32 64.86 82.88 90.79
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Table 12: Per-class Precision score - Validation Split. The metrics are presented as percentages, and the highest score in
each column is denoted in bold.

Model RB OB PF DE FS IS RO IN AF BE FO GR PH PB OS oP OK Normal
Xie et al. [19] 13.66 62.73 2330 1383 73.05 5.28 1021 1720 2851 2575 3.08 3845 2443 1451 7.69 17.61 61.39 92.36
§ Chen et al. [1] 1527 4648 985 542 60.78 320 22.00 1294 16.62 3115 280 1493 21.64 462 546 1990 4659 91.88
& Hassan e al. [0] 0.00 18.17 1.55 1.57 2785 068 224 0.00 697 000 000 530 264 000 000 0.00 0.00 0.00
Myransetal. [13] 0.88 393 093 063 638 014 028 044 1.88 144 010 1.71 049 047 0.14 007 6.03 26.21
ResNet-101 [7] 13.99 59.82 1821 1029 68.89 5.05 1156 16.44 2588 2696 232 3276 26.02 1423 10.04 19.80 61.78 97.61
S KSSNet[I5] 1495 60.52 1898 1051 71.26 5.69 1197 1724 2699 27.89 248 36.61 2859 14.61 10.78 21.84 63.50 97.68
% TResNet-M [16] 1450 59.34 18.01 11.06 6995 562 11.37 16.83 2639 2607 233 3321 28.88 1386 9.52 2193 61.64 97.87
© TResNet-L [16] 1426 59.84 1846 11.05 6955 627 11.12 17.69 27.08 27.19 244 3553 31.70 1648 991 2454 60.88 97.89

TResNet-XL [16] 1443 59.81 1947 1159 69.58 546 11.12 1736 26.12 2687 241 3355 2998 1540 10.12 23.00 63.16 97.86
Benchmark 1456 63.11 2356 14.50 72.00 6.46 1135 19.07 28.60 28.71 255 3734 3350 2111 12.67 3449 64.74 92.21

Table 13: Per-class Recall score - Validation Split. The metrics are presented as percentages, and the highest score in each
column is denoted in bold.

Model RB OB PF DE FS IS RO IN AF BE FO GR PH PB oS oP OK Normal
Xie etal. [19] 72.16  82.86 77.59 6546 81.67 6549 7408 8133 6854 73.19 5729 67.67 8406 73.07 67.18 8252 8220 89.83
§ Chenetal. [1] 63.16 7434 6695 7159 78.12 5028 57.18 5626  68.01 52.19 5494 81.80 82.28 9020 67.61 86.27 74.01 2.03
& Hassan eral. [0] 0.00  100.00 100.00 100.00 100.00 100.00 100.00 0.00 100.00 0.00 0.00 100.00 100.00 0.00 0.00 0.00  0.00 0.00
Myransetal. [13] 984 1037 2637 3.58 10.98 9.88 590  9.67 1294 1133 9.05 15.42 897 3856 1947 572 19.09 25.86
ResNet-101 [7] 86.38 9396 93.07 9028 9382 7650 87.42 89.83 8725 86.16 8090 8573 9257 9242 90.81 9592 90.78 67.13
E KSSNet[15] 84.36  94.01 9297  90.73 9272 7423 8738 8890 86.12 86.25 82.41 8534 9254 9229 9125 9559 90.34 68.61
E TResNet-M [16]  87.25 9451 9416 9122 9377 77.07 8858 89.12 88.07 8893 8526 8676 93.07 9412 9234 95.10 91.95 69.42
© TResNet-L [16] 87.04 9404 9426 9259 9398 7514 8879 8873 8646 8745 83.08 86.17 91.99 93.07 91.03 9428 92.19 69.39
TResNet-XL [16] 86.85 94.13  93.02 91.81 9380 78.89  88.58 89.69 8822 87.84 8224 8656 9199 9373 91.90 9559 91.00 70.29
Benchmark 83.66 9093 7991 68.11 91.76 7355 8625 8556  81.84 8275 7923 8242 88.02 7647 72.65 83.17 89.12 90.44

Table 14: Per-class AP score - Validation Split. The metrics are presented as percentages, and the highest score in each
column is denoted in bold.

Model RB OB PF DE FS IS RO IN AF BE FO GR PH PB 0S oP OK
Xieetal. [19] 29.82 83.81 8382 6325 8748 31.80 62.03 5460 6044 6643 4839 84.66 7856 6885 6124 7741 86.25
§ Chenetal. [1] 4830 7398 4998 4503 83.03 5631 78.12 4585 6199 71.01 4294 7462 7827 5695 51.00 56.89 80.80
& Hassaneral. [6] 720 32.00 1.09 026 3738 126 590 625 7.71 11.05 144 1027 434 0.00 000 585 19.14
Myransetal [13] 005 062 010 064 257 013 012 0.19 1.02 028 000 035 0.00 1.17  0.00  0.00 1.96
ResNet-101 [7] 5454 90.21 84.15 76.73 9356 49.33 81.88 67.13 74.85 8020 64.11 9083 87.63 6649 59.77 81.58 93.57
S KSSNet[18] 56.86 90.74 8542 7650 94.05 56.75 8343 68.86 7514 8140 6551 9127 8920 6649 6458 79.66 93.87
% TResNet-M [16]  57.22 9090 87.74 77.69 9398 58.68 80.56 69.94 76.17 8239 60.67 91.55 8990 69.27 6558 84.39 9432
© TResNet-L [16] 56.76  90.75 8832 7836 9395 6042 80.88 6921 75.64 8199 64.62 9137 8938 69.75 69.39 83.57 9444

TResNet-XL [16] 57.15 90.81 87.36 7834 9404 5691 8092 69.84 7601 82.00 6328 91.69 8897 69.66 68.16 82.09 94.23
Benchmark 56.68 90.93 90.12 80.30 94.06 60.55 80.79 6945 7599 8227 6532 92.06 89.89 7570 7297 84.81 94.57
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Table 15: Performance metrics for each method - Test Split. The metrics are presented as percentages, and the highest
score in each column is denoted in bold.

Model m-F1 M-F1 OV-F1 OV-P OV-R PC-F1 PC-P PC-R 0-1 mAP
Xie etal. [19] 59.05 3794 59.05 46.06 8224 4216 2948 7395 51.55 65.32
E Chen et al. [1] 3349 26.23 3349 26.03 4694 3455 2360 6448 7.63 59.89
& Hassan et al. [6] 12.57 6.27 12.57 733 44.12 6.83 3.67 5000 0.00 735
Myrans etal. [13]  5.66 3.88 5.66 336 18.07 5.02 304 1443 1451 059
ResNet-101 [7] 5391 3794 5391 40.19 8185 4346 2889 8770 39.38 74.99
s KSSNet [18] 55.64 39.22  55.64 42.12 8196 44.68 30.02 8732 4046 75.70
2 TResNet-M [16] 54.62 38.53 54.62 40.72 8294 4396 29.24 8856 40.23 76.55
O  TResNet-L [16] 55.34  39.45 5534 4156 82779 4472 2997 88.05 4042 76.82

TResNet-XL [16] 55.08 38.98  55.08 41.21 83.01 4434 29.61 8823 40.74 76.61
Benchmark 61.26 4235 61.26 4690 8830 46.22 3224 81.61 51.59 77.79

Table 16: Per-class F1 score - Test Split. The metrics are presented as percentages, and the highest score in each column is
denoted in bold.

Model RB OB PF DE FS IS RO IN AF BE FO GR PH PB 0S oP OK Normal
Xieetal. [19] 2347 71.12 34.63 2351 7725 999 16.14 31.33 39.59 3993 6.29 49.22 3461 24.09 1427 27.05 69.85 90.62
§ Chenetal.[!] 2454 5724 1685 11.65 6747 6.09 2999 23.03 2647 37.67 562 2484 3153 858 11.01 29.58 56.46 3.59
& Hassanetal. [0] 0.00 3035 295 349 4316 1.41 4.04 000 1319 000 0.00 984 445 0.00 0.00 0.00 0.00 0.00
Myrans et al. [13] 1.63  5.60 1.71 146 8.18 036 0.60 1.02 403 293 021 316 0.82 0.89 031 0.16  9.28 27.48
ResNet-101 [7] 2442 7252 28.62 1975 7922 998 19.07 30.13 3893 4215 487 47.69 3780 26.86 1856 30.54 73.28 78.57
s KSSNet[18] 26.06 73.34 29.89 19.64 80.56 10.83 19.84 3147 4059 43.50 524 50.88 40.74 2639 2055 32.84 7438 79.29
2 TResNet-M [16] 2478 72.54 2894 2096 79.87 10.89 1852 31.14 39.64 4139 490 4797 40.11 2499 1834 34.68 73.90 79.91
& TResNet-L[16] 2478 7293 28.68 20.62 79.60 12.01 1820 3229 4043 4256 S5.11 4997 4333 28.13 19.43 38.68 73.41 79.88

TResNet-XL [16] 2476 72.66 30.24 2149 79.71 1046 1832 31.51 39.59 4194 5.13 4832 4121 27.12 1925 3510 7441 80.42
Benchmark 25.11 7440 3558 25.01 8050 12.26 1859 3426 4193 44.16 526 51.28 45.09 31.60 2220 49.17 75.04 90.94

Table 17: Per-class F2 score - Test Split. The metrics are presented as percentages, and the highest score in each column is
denoted in bold.

Model RB OB PF DE FS IS RO IN AF BE FO GR PH PB 0S op OK Normal
Xieetal. [19] 39.77 77.88 5149 3753 79.90 2042 30.19 4928 53.16 54.67 1350 5940 53.74 39.57 2630 4524 76.63 89.77
§ Chenetal. 1] 3891 6652 2990 2333 73.08 1294 4211 3550 41.72 4401 1211 42.63 5053 1873 21.87 4837 65.92 228
& Hassanetal. [0] 0.00 5214 7.07 828 6550 345 953 000 2753 0.00 0.00 21.43 1044 0.00 0.00 000 0.00 0.0
Myransetal [13] 327 770 389 247 975 0.87 133 222 727 535 051 611 180 215 077 038 1351 27.35
ResNet-101 [7] 4295 8392 4825 37.06 8722 21.11 3587 50.06 5823 6037 11.18 64.81 5883 47.12 3524 51.76 82.63 70.41
E KSSNet[18] 4479 84.52 49.68 3693 8736 2242 3696 5145 59.54 61.55 1196 66.99 61.57 4635 37.92 5459 83.00 71.32
2 TResNet-M[16] 4339 84.36 4899 3884 8748 2270 3512 51.09 59.13 6027 11.27 6541 60.99 4471 3504 56.55 83.72 72.08
& TResNet-L [16] 4350 84.42 4855 3839 8745 2445 3467 5227 5955 61.13 11.70 66.37 63.54 48.58 36.69 6042 83.50 72.03

TResNet-XL [16] 4339 8422 50.14 3942 8743 2200 34.89 5139 59.15 60.64 11.74 6547 61.83 4745 3631 56.76 83.52 72.74
Benchmark 4335 8382 5294 39.69 8676 24.70 3496 5341 5945 6105 11.94 66.05 64.00 4739 36.79 6541 82.72 90.35

Table 18: Per-class Precision score - Test Split. The metrics are presented as percentages, and the highest score in each
column is denoted in bold.

Model RB OB PF DE FS IS RO IN AF BE FO GR PH PB 0S OoP OK Normal
Xieetal. [19] 1395 62.14 2240 1449 17320 540 9.09 1950 27.77 2754 333 3828 21.72 1458 810 16.20 60.87 92.09
§ Chenetal. [1] 15.19 4643 975 635 5982 324 2027 1452 1645 3038 297 1465 1938 451 6.02 1796 4557 91.35
& Hassaneral. [0] 0.00 1789 150 1.77 2752 0.71 206 000 7.06 0.00 0.00 517 228 0.00 0.00 0.00 0.00 0.00
Myransetal. [13] 0.89 386 088 0.87 646 0.18 031 054 232 1.67 0.11 175 043 045 0.16 008 6.09 27.70
ResNet-101 [7] 1420 59.14 17.06 11.10 6872 531 10.71 1811 2508 28.04 251 33.12 23.69 1565 1037 18.14 61.65 97.37
= KSSNet[18] 15.36 60.10 1796 11.03 7131 582 11.20 19.11 2652 2922 271 3633 2605 1536 11.66 19.73 63.39 97.46
2 TResNet-M [16] 1445 5881 17.21 11.86 69.76 5.83 10.36 18.86 2558 27.19 252 3321 2554 1440 1023 21.09 61.81 97.59
O TResNet-L [16] 1443 59.44 17.05 11.64 6923 6.50 10.15 19.73 2633 2826 2.64 3540 2832 1653 10.89 24.18 61.10 97.62

TResNet-XL [16] 1443 59.12 1820 1222 6948 558 1023 19.16 2552 27770 2.65 33.64 2648 1583 10.80 2145 62.96 97.58
Benchmark 1476 62.66 23.01 1547 7187 6.66 1044 21.44 28.11 3022 272 3736 3022 2032 1337 3479 64.99 91.94
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Table 19: Per-class Recall score - Test Split. The metrics are presented as percentages, and the highest score in each column
is denoted in bold.

Model RB OB PF DE FS IS RO IN AF BE FO GR PH PB 0oS oP OK Normal
Xie etal. [19] 74.02  83.15 7624 6229 8177 6699 7198 79.72 6891 7253 57.16 6890 8511 6927 60.00 81.99 81.93 89.21
g Chenetal. [1] 63.81 7459 6183 7035 7737 5141 57.64 5555 67774 4956 5239  81.56 8447 8848 6396 83.86 74.21 1.83
& Hassan et al. [0] 0.00  100.00 100.00 100.00 100.00 100.00 100.00 0.00 100.00 0.00 0.00 100.00 100.00 0.00 0.00 0.00 0.00 0.00
Myrans etal. [13] 996 1026  26.37 4.55 11.17 12.34 7.19 1026 1562 11.87  8.63 16.13 898 3361 1849 7.69 1942 27.26
ResNet-101 [7] 86.91 9373 8892 89.16 9352 8247 86.85 89.55 86.96 8482 8166 8519 9352 9472 8792 96.44 90.31 65.85
E KSSNet[15] 8598 94.07 8892 8934 9258 7825 87.07 8921 8646 85.09 81.66 8491 9342 9352 86.79 97.75 89.96 66.83
2 TResNet-M[I16] 8695 94.64 91.02 90.03 9342 8203 8722 89.21 8795 86.62 8475 8634 9338 9436 89.06 97.56 91.85 67.66
& TResNet-L [16] 87.64 9434 9020 90.16 93.61 79.00 8748 8893 86.99 86.19 8274 8494 9220 9424 90.00 96.62 91.93 67.60

TResNet-XL [16] 87.04 9422 8933 8886 9347 8323 8789 8872 8822 86.27 83.05 8574 92.81 9484 88.68 9644 90.94 68.39
Benchmark 84.04 9154 7845 6519 9150 7652 8472 85.16 8242 8195 77.81 81.74 88.83 71.07 6547 83.86 88.78 89.96

Table 20: Per-class AP score - Test Split. The metrics are presented as percentages, and the highest score in each column is
denoted in bold.

Model RB OB PF DE FS IS RO IN AF BE FO GR PH PB oS opP OK
Xie et al. [19] 35.07 8348 8586 6297 8730 36.64 59.04 5852 5815 6244 3626 82.11 80.02 6549 5370 77.47 85.85
3; Chenetal. [1] 4849 74.08 48.09 4743 81.76 5795 7470 4877 6086 6530 31.56 7491 80.58 43.37 49.87 49.86 80.61
& Hassaneral. [6] 6.16 2679 033 3.60 35.10 1.17 125 316 562 514 044 923 417 0.00 1.57 252 18.69
Myrans eral. [13]  0.11  0.69 0.00 0.63 291 0.00 0.09 0.16 1.80 043 018 0.69 000 000 000 024 2.09
ResNet-101 [7] 55.25 90.20 88.04 7196 9332 65.63 7898 65.69 71.40 77.78 4733 90.72 88.05 6534 5255 7933 93.32
s KSSNet[18] 5843 90.59 86.80 71.99 93.68 6997 80.75 6828 7257 7892 44.03 O91.11 8846 6231 55.86 79.26 93.83
2 TResNet-M[16] 5561 90.16 89.82 76.00 93.65 6585 7858 69.71 7345 79.82 5044 91.03 8941 67.57 57.79 78.11 94.32
& TResNet-L [16] 56.95 90.38 89.28 75.03 93.64 68.61 80.04 70.09 7359 7943 48.74 9136 88.77 6729 59.38 79.00 94.40

TResNet-XL [16] 56.64 90.00 89.17 7566 93.68 63.87 79.70 6890 73.62 79.80 48.14 91.33 8883 69.51 5938 79.96 94.17
Benchmark 56.99 9046 89.89 7509 93.70 70.74 80.20 70.81 73.99 79.96 4821 9221 89.08 7270 62.57 8133 94.55
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