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A. Content

In these supplementary materials we describe in further
detail aspects of the dataset and the training process and per-
formance of the tested methods. Specifically, the following
will be described:

• Additional examples from the Sewer-ML dataset (Sec-
tion B).

• Further insights into the Sewer-ML dataset (Sec-
tion C).

• Full training details and metric performance for the
Faster-RCNN text detector (Section D).

• Full details on the Extra Trees hyperparameter grid
search (Section E).

• The loss curves of the trained multi-label classification
methods (Section F).

• Ablation study of the two-stage methods (Section G).

• Results when evaluating using the common multi-label
performance metrics (Section H).

B. Sewer-ML Dataset Examples

In this section we present more examples of the images
in the Sewer-ML dataset. All images are annotated using
the Danish inspection standard containing 18 classes [3],
listed in Table 1. In Figure 1 we present examples of dif-
ferent cases with several co-occurring classes. In Figure 12
we present five examples of each class, where only the men-
tioned class is present.

C. Sewer-ML Dataset Insights

In this section, we describe the available information in
the Sewer-ML dataset in more detail. First, we report the
number of occurrences for each class in the dataset splits,
see Table 2, where it is observed that the distribution of the
classes is similar across the different splits.

Table 1: Sewer inspection classes. Overview and short
description of each annotation class [3].

Code Description
VA Water Level (in percentages)
RB Cracks, breaks, and collapses
OB Surface damage
PF Production error
DE Deformation
FS Displaced joint
IS Intruding sealing material
RO Roots
IN Infiltration
AF Settled deposits
BE Attached deposits
FO Obstacle
GR Branch pipe
PH Chiseled connection
PB Drilled connection
OS Lateral reinstatement cuts
OP Connection with transition profile
OK Connection with construction changes

Moreover, we look into the pipe properties associated
with each image. Each image contains information on the
pipe shape, material, dimension, and water level.

In Figure 2 we plot the distribution of the eight different
pipe material types for the images in each split. We find
that the concrete, vitrified clay, plastic, and lining materials
are the most common materials in the Sewer-ML dataset.
We also observe that all material types are equally repre-
sented across the splits, except for the “Brickwork” and
“Unknown” material types. The reason these material types
are skewed for the validation and test sets, is due to these
materials being rarely used anymore, and therefore rarely
occur in the sewer inspection videos. Therefore, the images
containing these material types are from a small subset of
pipes, which were not evenly spread out across the splits.

In Figure 3 we plot the distribution of the six different
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(a) FO, FS (b) DE, AF, FO, OP (c) IN, OB, BE

(d) GR, OB, FS, OK (e) PB, RB, OB, FS (f) PH, RO, OB

(g) IS, OK (h) OS, PF (i) OP, OK, FS, OB

Figure 1: Sewer-ML data examples with co-occurring classes. A subset of the images in the Sewer-ML showcasing images
with multiple classes co-occurring and all annotated classes represented. The class codes are described in Table 1.

Table 2: Class occurrences per split. The number of occurrences for each class per dataset split.

Split RB OB PF DE FS IS RO IN AF BE FO GR PH PB OS OP OK Normal
Training 45,821 184,379 16,254 19,084 283,983 6,271 22,637 23,782 74,856 66,499 5,010 53,986 23,685 6,746 4,625 5,325 154,624 552,820
Validation 5,538 23,624 2,021 2,038 36,218 881 2,917 2,812 9,059 7,929 597 6,889 3,432 765 457 612 19,655 68,681
Test 5,501 23,264 1,949 2,307 35,781 924 2,684 3,235 9,182 8,720 649 6,726 2,962 833 530 533 19,420 69,221
Total 56,860 231,267 20,224 23,429 355,982 8,076 28,238 29,829 93,097 83,148 6,256 67,601 30,079 8,344 5,612 6,470 193,699 690,722

pipe shapes for the images in each of the dataset splits.
We find that the circular type is by far the most common
pipe shape, followed secondly by conical pipes, whereas
the remaining pipe shapes only appear a few thousand times
each. As with the pipe material, we see that distribution of
pipe shapes are similar between dataset splits, except for
the “Eye shaped”, “Rectangular”, and “Other” pipe shapes.
This is again due to these pipe shapes occurring in a limited

set of sewer inspections, and have therefore not been evenly
divided across the splits.

In Figure 4 we plot the occurrences of the pipe dimen-
sions associated with each image. The dimension is denoted
in millimeters, as per the industry standard. We see that the
majority of images are from pipes with a diameter of 100–
1,000 millimeters, with a skew towards 100 millimeters. We
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Figure 2: Distribution of the pipe materials. We plot the
occurrence frequencies for each of the eight pipe materials
in the dataset, for each dataset split. Note that the y-axis is
log-scaled.
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Figure 3: Distribution of the pipe shapes. We plot the
occurrence frequencies for each of the six pipe shapes in
the dataset, for each dataset split. Note that the y-axis is
log-scaled.

observe that the distribution of the pipe dimension for the
training, validation, and test splits appears to be similar in
shape, as expected.

In Figure 5 we plot the distribution of the different water
level classes for each data split. We find that the distribution
of the water level classes is similar across the three dataset
splits We also observe that the majority of the images have
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Figure 4: Distribution of the pipe dimensions. Plots of
the occurrence frequencies of each pipe dimension, for each
dataset split. Note that both axes are log-scaled.
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Figure 5: Distribution of the water level. We plot the oc-
currence frequencies for each of the water level classes, for
each dataset split. Note that the y-axis is log-scaled.

an associated water level in the range 0–30 %, while the
remaining classes occur less often, and not as evenly split
between the classes. This can be explained by the fact that
when the majority of a pipe is filled with water, the inspec-
tions may at times be postponed for a later time and it be-
comes difficult to accurately access how much water it ac-
tually contains. Furthermore, the inspection vehicle will at
times be partially or fully submerged in the water, resulting
in the inspector losing key reference points used for esti-
mating the water level, such as the pipe wall.

Lastly, in Figure 6 we plot the resolution of the sewer
inspection videos in each split. The resolution is denoted
as width by height. It should be noted that the video res-
olutions reported are not the resolutions observed by the
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Figure 6: Distribution of video resolution. We present
the distribution of the different resolutions for the videos in
each dataset split. Note the y-axis is log-scaled.
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Figure 7: Distribution of image resolution. We present
the distribution of the different resolutions for the images in
each dataset split. Note the y-axis is log-scaled.

inspector. The videos are encoded in such a way that the
video data is stored in the resolution reported in this work,
but when presented using a media player the width is mul-
tiplied by a “sample aspect ratio”. We decide not to apply
this resizing, in order to not introduce artifacts in the image
data. We find that across the videos in each dataset split, the
resolutions are evenly distributed. This is also true when
looking at the resolution for all the images in the dataset
splits, see Figure 7.

Figure 8: Training split bounding box information. The
training split bounding box annotations are plotted with the
bounding box area against the bounding box ratio.

D. Faster-RCNN Training and Metric Details

In this section we detail the hyperparameters and training
settings for the Faster-RCNN [15] model we use to redact
overlaid text information on the images. We also present the
full COCO [11] metric suite performance, to show how well
the network performs. A training split of 20,739 images and
a validation split of 2,305 images are used, wherein all text
information is manually annotated with bounding boxes.

Hyperarameters. The Faster-RCNN model is trained
for 26 epochs with a batch size of 16 batches. An SGD
optimizer with momentum is used, with a learning rate of
0.02, momentum of 0.9 and weight decay of 0.0001. The
learning rate is multiplied by 0.1 at epoch 16 and 22, re-
spectively. We employ linear warm up of the learning rate
during the first 1,000 mini batches of the first epoch, in-
creasing the learning rate from 10−3 to 0.02. The back-
bone is a ResNet-50 FPN [7, 10] pre-trained on ImageNet
[17], of which we fine-tune the last three residual blocks.
Custom anchor boxes are used, with a bounding box ra-
tios (height over width) of 1:8, 1:4 and 1:2, and bounding
box scales with areas of 322, 642, 1282, 2562, and 5122.
These values are determined based on the bounding box in-
formation in the training split, see Figure 8. All images are
normalized using the ImageNet per channel mean and stan-
dard deviation, and horizontal flipping with a 50% chance is
used during training. The images are rescaled such that the
shortest side is 800 pixels, while enforcing that the largest
side is no larger than 1,333 pixels. The training loss and
mAP[0.5:0.95] on the validation set are plotted in Figure 9.
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Table 3: Full COCO metric suite. The performance of the trained Faster-RCNN model on the validation set, for different
Average Precision (AP) and Average Recall (AR) settings.

AP, IoU: AP@[0.5:0.95], Area: AR@[0.5:0.95], #Dets: AR@[0.5:0.95], Area:
0.5:0.95 0.5 0.75 S M L 1 10 100 S M L

89.10 98.89 96.39 88.08 89.96 95.63 10.06 88.31 92.25 91.72 92.71 96.28
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Figure 9: Faster-RCNN loss and metric curves. The train-
ing loss and validation metrics for the trained Faster-RCNN
model. mAP@[0.5:0.95] is denoted as mAP.

Metrics. In order to determine the effect of the Faster-
RCNN model, we compute the full COCO metrics suite on
the validation set, as shown in Table 3. As shown in the
metrics, we have a high precision and recall, though the re-
call indicates that not all of the text objects have been de-
tected. This is partially due to some text information being
annotated with a single bounding box but detected as sev-
eral boxes, and vice versa. To verify the annotations we
manually inspect a set of randomly selected samples.

E. Extra Trees Hyperparameter Grid Search

For the system proposed by Myrans et al. [13, 14], two
Extra Trees classifiers are used in sequence. However, the
hyperparameters of the trees are not specified. Therefore,
we conduct a small grid search across three hyperparame-

Table 4: Extra Trees grid search intervals. Hyperparame-
ter search intervals for the Extra Trees classifiers. d denotes
the dimensionality of the GIST descriptor.

Parameter Values
Number of Trees [10, 100, 250]
Max Depth [10, 20, 30]
Max Features [

√
d, log2(d), d/3]

ters: The amount of trees in the ensemble, the maximum
depth of the trees, and the maximum amount of features
used when splitting an internal node. The investigated pa-
rameters are reported in Table 4. We train the Extra Trees
classifier in three settings. First, we train under a binary
setting determining whether there is any class in the im-
age. Thereafter, we train a multi-label setting, first on a
subset of the dataset only containing images with annotated
classes, and secondly on the full dataset. The resulting vali-
dation losses of the hyperparameter search is shown in Fig-
ure 10. From this we conclude that for the binary Extra
Trees classifier 100 trees, with a maximum depth of 10 and
using log2(d) features when splitting, should be used. Sim-
ilarly, we find that for the multi-label Extra Trees classifiers
250 trees, with a maximum depth of 10 and using log2(d)
features when splitting, should be used.

F. CNN Loss Curves

We present the loss curves for all the tested convolutional
neural networks (CNNs) tested, see Figure 11. All networks
are trained using the weighted binary cross-entropy loss,
and using hyperparameters set based on the guidelines from
Goyal et al. [5]. Further training details are presented in the
main manuscript.

From the loss plots we observe that the validation loss
of the majority of the tested networks start diverging af-
ter approximately 30-40 epochs, a clear sign of overfitting.
The method by Xie et al. [19] is an exception, with the first
and second stage methods stagnating after 60–70 epochs.
We also observe that the first stage of Chen et al. [1], the
SqueezeNet [8], has a constant loss value for both the train-
ing and validation loss. Similarly, the second stage of Xie et
al. settles on a constant loss after the initial 10 epochs when
trained on the full dataset.
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Figure 10: Extra Trees grid search results. Results of the grid search of the Extra Trees classifiers for: Binary classifier
trained on full dataset, multi-label classifier trained on a subset of the dataset, and multi-label classifier trained on the full
dataset.
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Figure 11: Multi-label CNN loss curves. The training and validation loss curves for all tested networks. “1st Stage”
indicates a binary classifier, “2nd Stage” indicates a multi-label classifier trained on a subset of the dataset, and “E2E”
indicates a multi-label classifier trained in an end-to-end manner with the full dataset.
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Table 5: Effect of binary stage in two-stage classifiers.
We present the metric performance for the two-stage meth-
ods, comparing the effect of the full pipeline and using only
the multi-label classifier. TS denotes that both stages are
used, otherwise only the second stage is used.

Model TS Validation Test
F2CIW ↑ F1Normal ↑ F2CIW ↑ F1Normal ↑

Xie [19]
X 48.57 91.08 48.34 90.62

37.65 0.52 37.83 0.68

Chen [1]
X 42.03 3.96 41.74 3.59

42.03 3.96 41.74 3.59

Myrans [13]
X 4.01 26.03 4.11 27.48

19.25 0.00 19.19 0.00

Table 6: Effect of training second stage on full dataset.
The metric performance for the two-stage methods, when
training both stages on the full dataset. TS denotes that both
stages are used, otherwise only the second stage is used.

Model TS Validation Test
F2CIW ↑ F1Normal ↑ F2CIW ↑ F1Normal ↑

Xie [19] X 31.98 88.23 31.82 87.95
28.12 59.98 27.96 59.99

Chen [1] X 43.45 76.73 43.14 75.68
43.45 76.73 43.14 75.68

Myrans [13] X 2.58 25.98 2.61 27.48
7.48 0.00 7.37 0.00

G. Two-Stage Ablation Study
We conduct two ablation studies on the two-stage clas-

sifiers, to determine the effect of the different stages and
training methodology.

What is the effect of the binary classifier? We compare
the effect on performance of using both stages or only the
second stage. These results are presented in Table 5, and
indicate that the first stage is crucial. Performance for Xie
et al. [19] degrades for both metrics when the first stage is
missing, whereas for Chen et al. [1] there is no difference
as the first stage never predicts a normal pipe. For Myrans
et al. [13] the first stage inaccurately classifies images with
classes as normal pipes, causing a lower F2CIW score. This
is improved when using only the second stage, but at the
cost of an inability to recognize any normal pipes.

Training the second stage on the full dataset. Clas-
sically within the sewer classification domain, the second
stage is only trained on data which contains some kind of
class. We investigate whether performance improves by
training on the full dataset, such that the second stage also
sees normal pipes. The results are shown in Table 6. For
Myrans et al. the performance is reduced substantially in
both tested settings, and the second stage is still unable to
classify normal pipes. For Xie et al. both metrics are lower
when comparing to Table 5, except for the large increase
in FNormal score when only using the second stage. The

only performance improvement is achieved by Chen et al.
through the use of the deeper InceptionV3 network.

H. Multi-Label Metrics and Results
When evaluating multi-label tasks, a large suite of met-

rics are commonly used, in order to uncover different as-
pects of the tested methods. Commonly, the F1-score is
used in different variations, depending on how the F1-score
is calculated or averaged. An overview of the different met-
rics is provided in Table 8. Each of the metrics are in the
range [0, 1], and for all a high score is better. As a reference
on how to compute the metrics, we refer to the supplemen-
tary materials of the work by Durand et al. [4]. We present
the classic performance metrics for each of the tested meth-
ods on both the validation and test splits, as well as the per-
class F1, F2, Recall, Precision, and Average Precision (AP).
It should be noted, that AP cannot be calculated for the nor-
mal class. This is due to the normal class being an implicit
class, and therefore not possible to rank as it does not have
a single associated probability. The Kumar et al. [9], Meijer
et al. [12] and ML-GCN [2] methods are not shown in the
metric tables as the models diverged during training. The
benchmark algorithm consisting of the first stage from Xie
et al. [19] and the TResNet-L multi-label classifier [16] is
reported as “Benchmark”. The metrics for the validation
split are presented in Table 9-14 and the metrics for the test
split are presented in Table 15-20.
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Figure 12: Sewer-ML data examples. A subset of the images in the Sewer-ML showcasing five images from each of the
annotated classes as well as normal pipes in each row. The class codes are described in Table 1.
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Figure 12: Continued from previous page
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Table 8: Multi-label classification metrics. A short description of the commonly used multi-label classification metrics. For
details on how the metrics are computed, we refer to Durand et al. [4].

Metric Description
Macro-F1 (M-F1) Average F1-score across all classes.
Micro-F1 (m-F1) F1 score calculated over all samples.
Overall Precision (OV-P) Precision metric calculated over all samples, regardless of class.
Overall Recall (OV-R) Recall metric calculated over all samples, regardless of class.
Overall F1 (OV-F1) F1 score calculated using OV-P and OV-R.
Per-class Precision (PC-P) Average precision metric across all classes.
Per-class Recall (PC-R) Average recall metric across all classes.
Per-class F1 (PC-F1) F1-score calculated using PC-P and PC-R.
Zero-one Exact Match Accuracy (0-1) Ratio of samples with all labels correctly predicted.
mean Average Precision (mAP) Average of the Average Precision of all annotated classes

Table 9: Performance metrics for each method - Validation Split. The metrics are presented as percentages, and the
highest score in each column is denoted in bold.

Model m-F1 M-F1 OV-F1 OV-P OV-R PC-F1 PC-P PC-R 0-1 mAP

Se
w

er

Xie et al. [19] 59.33 38.10 59.33 46.31 82.52 42.43 29.61 74.79 51.64 66.40
Chen et al. [1] 33.94 26.62 33.94 26.38 47.60 35.09 23.97 65.40 7.96 62.06
Hassan et al. [6] 12.76 6.36 12.76 7.44 44.86 6.92 3.72 50.00 0.00 8.89
Myrans et al. [13] 5.39 3.69 5.39 3.19 17.27 4.80 2.90 14.06 13.66 0.54

G
en

er
al

ResNet-101 [7] 54.47 38.08 54.47 40.63 82.62 43.58 28.98 87.83 39.96 76.27
KSSNet [18] 56.18 39.37 56.18 42.52 82.77 44.82 30.12 87.56 41.28 77.63
TResNet-M [16] 55.27 38.69 55.27 41.22 83.88 44.14 29.35 88.93 41.07 78.29
TResNet-L [16] 56.01 39.63 56.01 42.09 83.69 44.90 30.10 88.32 41.22 78.75
TResNet-XL [16] 55.83 39.30 55.83 41.82 83.98 44.66 29.85 88.67 41.68 78.32
Benchmark 61.45 42.39 61.45 47.02 88.67 46.38 32.25 82.55 51.65 79.79

Table 10: Per-class F1 score - Validation Split. The metrics are presented as percentages, and the highest score in each
column is denoted in bold.

Model RB OB PF DE FS IS RO IN AF BE FO GR PH PB OS OP OK Normal

Se
w

er

Xie et al. [19] 22.97 71.40 35.83 22.84 77.12 9.77 17.94 28.39 40.27 38.09 5.84 49.03 37.86 24.21 13.80 29.03 70.29 91.08
Chen et al. [1] 24.60 57.19 17.17 10.08 68.37 6.03 31.78 21.05 26.71 39.01 5.33 25.26 34.27 8.79 10.10 32.34 57.18 3.96
Hassan et al. [6] 0.00 30.75 3.06 3.09 43.57 1.35 4.39 0.00 13.02 0.00 0.00 10.06 5.14 0.00 0.00 0.00 0.00 0.00
Myrans et al. [13] 1.61 5.70 1.79 1.07 8.07 0.28 0.53 0.84 3.29 2.56 0.20 3.07 0.94 0.94 0.28 0.14 9.16 26.03

G
en

er
al

ResNet-101 [7] 24.08 73.10 30.46 18.47 79.44 9.48 20.43 27.80 39.92 41.07 4.50 47.41 40.62 24.66 18.08 32.83 73.52 79.55
KSSNet [18] 25.40 73.64 31.52 18.84 80.59 10.56 21.06 28.88 41.11 42.15 4.82 51.24 43.69 25.23 19.28 35.55 74.58 80.60
TResNet-M [16] 24.87 72.90 30.24 19.72 80.13 10.47 20.16 28.31 40.61 40.32 4.54 48.04 44.08 24.17 17.26 35.64 73.80 81.23
TResNet-L [16] 24.51 73.14 30.87 19.74 79.94 11.57 19.76 29.49 41.24 41.49 4.74 50.31 47.15 28.00 17.88 38.95 73.34 81.22
TResNet-XL [16] 24.75 73.15 32.20 20.58 79.89 10.21 19.76 29.09 40.30 41.15 4.69 48.35 45.22 26.45 18.23 37.08 74.57 81.81
Benchmark 24.81 74.50 36.39 23.91 80.69 11.87 20.05 31.19 42.39 42.63 4.94 51.40 48.53 33.09 21.58 48.75 75.00 91.32

Table 11: Per-class F2 score - Validation Split. The metrics are presented as percentages, and the highest score in each
column is denoted in bold.

Model RB OB PF DE FS IS RO IN AF BE FO GR PH PB OS OP OK Normal

Se
w

er

Xie et al. [19] 38.87 77.86 52.92 37.48 79.78 19.96 32.90 46.59 53.52 53.48 12.66 58.74 56.49 40.44 26.37 47.51 76.98 90.32
Chen et al. [1] 38.82 66.38 31.00 20.81 73.90 12.77 43.33 33.70 42.02 45.98 11.64 43.15 52.73 19.18 20.63 51.75 66.21 2.52
Hassan et al. [6] 0.00 52.60 7.32 7.37 65.87 3.30 10.29 0.00 27.24 0.00 0.00 21.86 11.94 0.00 0.00 0.00 0.00 0.0
Myrans et al. [13] 3.23 7.81 4.06 1.84 9.59 0.66 1.16 1.85 5.95 4.78 0.49 5.91 2.03 2.26 0.69 0.33 13.32 25.93

G
en

er
al

ResNet-101 [7] 42.45 84.34 51.08 35.34 87.49 19.98 37.81 47.47 59.18 59.87 10.39 64.78 61.24 44.03 34.81 54.23 82.99 71.60
KSSNet [18] 43.74 84.64 52.24 35.92 87.45 21.76 38.67 48.54 59.89 60.81 11.08 67.40 63.94 44.73 36.60 57.05 83.30 72.95
TResNet-M [16] 43.55 84.49 51.02 37.23 87.79 21.75 37.57 47.93 60.01 59.99 10.51 65.61 64.43 43.62 33.70 57.04 83.71 73.71
TResNet-L [16] 43.08 84.39 51.75 37.39 87.81 23.50 37.03 49.20 60.10 60.60 10.91 67.05 66.64 48.24 34.53 60.12 83.59 73.69
TResNet-XL [16] 43.34 84.44 52.99 38.50 87.69 21.37 37.01 48.93 59.79 60.42 10.79 65.77 65.07 46.46 35.12 58.61 83.63 74.49
Benchmark 42.92 83.56 54.06 39.16 86.99 23.89 37.17 50.41 59.64 60.12 11.30 66.39 66.40 50.16 37.32 64.86 82.88 90.79
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Table 12: Per-class Precision score - Validation Split. The metrics are presented as percentages, and the highest score in
each column is denoted in bold.

Model RB OB PF DE FS IS RO IN AF BE FO GR PH PB OS OP OK Normal

Se
w

er

Xie et al. [19] 13.66 62.73 23.30 13.83 73.05 5.28 10.21 17.20 28.51 25.75 3.08 38.45 24.43 14.51 7.69 17.61 61.39 92.36
Chen et al. [1] 15.27 46.48 9.85 5.42 60.78 3.20 22.00 12.94 16.62 31.15 2.80 14.93 21.64 4.62 5.46 19.90 46.59 91.88
Hassan et al. [6] 0.00 18.17 1.55 1.57 27.85 0.68 2.24 0.00 6.97 0.00 0.00 5.30 2.64 0.00 0.00 0.00 0.00 0.00
Myrans et al. [13] 0.88 3.93 0.93 0.63 6.38 0.14 0.28 0.44 1.88 1.44 0.10 1.71 0.49 0.47 0.14 0.07 6.03 26.21

G
en

er
al

ResNet-101 [7] 13.99 59.82 18.21 10.29 68.89 5.05 11.56 16.44 25.88 26.96 2.32 32.76 26.02 14.23 10.04 19.80 61.78 97.61
KSSNet [18] 14.95 60.52 18.98 10.51 71.26 5.69 11.97 17.24 26.99 27.89 2.48 36.61 28.59 14.61 10.78 21.84 63.50 97.68
TResNet-M [16] 14.50 59.34 18.01 11.06 69.95 5.62 11.37 16.83 26.39 26.07 2.33 33.21 28.88 13.86 9.52 21.93 61.64 97.87
TResNet-L [16] 14.26 59.84 18.46 11.05 69.55 6.27 11.12 17.69 27.08 27.19 2.44 35.53 31.70 16.48 9.91 24.54 60.88 97.89
TResNet-XL [16] 14.43 59.81 19.47 11.59 69.58 5.46 11.12 17.36 26.12 26.87 2.41 33.55 29.98 15.40 10.12 23.00 63.16 97.86
Benchmark 14.56 63.11 23.56 14.50 72.00 6.46 11.35 19.07 28.60 28.71 2.55 37.34 33.50 21.11 12.67 34.49 64.74 92.21

Table 13: Per-class Recall score - Validation Split. The metrics are presented as percentages, and the highest score in each
column is denoted in bold.

Model RB OB PF DE FS IS RO IN AF BE FO GR PH PB OS OP OK Normal

Se
w

er

Xie et al. [19] 72.16 82.86 77.59 65.46 81.67 65.49 74.08 81.33 68.54 73.19 57.29 67.67 84.06 73.07 67.18 82.52 82.20 89.83
Chen et al. [1] 63.16 74.34 66.95 71.59 78.12 50.28 57.18 56.26 68.01 52.19 54.94 81.80 82.28 90.20 67.61 86.27 74.01 2.03
Hassan et al. [6] 0.00 100.00 100.00 100.00 100.00 100.00 100.00 0.00 100.00 0.00 0.00 100.00 100.00 0.00 0.00 0.00 0.00 0.00
Myrans et al. [13] 9.84 10.37 26.37 3.58 10.98 9.88 5.90 9.67 12.94 11.33 9.05 15.42 8.97 38.56 19.47 5.72 19.09 25.86

G
en

er
al

ResNet-101 [7] 86.38 93.96 93.07 90.28 93.82 76.50 87.42 89.83 87.25 86.16 80.90 85.73 92.57 92.42 90.81 95.92 90.78 67.13
KSSNet [18] 84.36 94.01 92.97 90.73 92.72 74.23 87.38 88.90 86.12 86.25 82.41 85.34 92.54 92.29 91.25 95.59 90.34 68.61
TResNet-M [16] 87.25 94.51 94.16 91.22 93.77 77.07 88.58 89.12 88.07 88.93 85.26 86.76 93.07 94.12 92.34 95.10 91.95 69.42
TResNet-L [16] 87.04 94.04 94.26 92.59 93.98 75.14 88.79 88.73 86.46 87.45 83.08 86.17 91.99 93.07 91.03 94.28 92.19 69.39
TResNet-XL [16] 86.85 94.13 93.02 91.81 93.80 78.89 88.58 89.69 88.22 87.84 82.24 86.56 91.99 93.73 91.90 95.59 91.00 70.29
Benchmark 83.66 90.93 79.91 68.11 91.76 73.55 86.25 85.56 81.84 82.75 79.23 82.42 88.02 76.47 72.65 83.17 89.12 90.44

Table 14: Per-class AP score - Validation Split. The metrics are presented as percentages, and the highest score in each
column is denoted in bold.

Model RB OB PF DE FS IS RO IN AF BE FO GR PH PB OS OP OK

Se
w

er

Xie et al. [19] 29.82 83.81 83.82 63.25 87.48 31.80 62.03 54.60 60.44 66.43 48.39 84.66 78.56 68.85 61.24 77.41 86.25
Chen et al. [1] 48.30 73.98 49.98 45.03 83.03 56.31 78.12 45.85 61.99 71.01 42.94 74.62 78.27 56.95 51.00 56.89 80.80
Hassan et al. [6] 7.20 32.00 1.09 0.26 37.38 1.26 5.90 6.25 7.71 11.05 1.44 10.27 4.34 0.00 0.00 5.85 19.14
Myrans et al. [13] 0.05 0.62 0.10 0.64 2.57 0.13 0.12 0.19 1.02 0.28 0.00 0.35 0.00 1.17 0.00 0.00 1.96

G
en

er
al

ResNet-101 [7] 54.54 90.21 84.15 76.73 93.56 49.33 81.88 67.13 74.85 80.20 64.11 90.83 87.63 66.49 59.77 81.58 93.57
KSSNet [18] 56.86 90.74 85.42 76.50 94.05 56.75 83.43 68.86 75.14 81.40 65.51 91.27 89.20 66.49 64.58 79.66 93.87
TResNet-M [16] 57.22 90.90 87.74 77.69 93.98 58.68 80.56 69.94 76.17 82.39 60.67 91.55 89.90 69.27 65.58 84.39 94.32
TResNet-L [16] 56.76 90.75 88.32 78.36 93.95 60.42 80.88 69.21 75.64 81.99 64.62 91.37 89.38 69.75 69.39 83.57 94.44
TResNet-XL [16] 57.15 90.81 87.36 78.34 94.04 56.91 80.92 69.84 76.01 82.00 63.28 91.69 88.97 69.66 68.16 82.09 94.23
Benchmark 56.68 90.93 90.12 80.30 94.06 60.55 80.79 69.45 75.99 82.27 65.32 92.06 89.89 75.70 72.97 84.81 94.57
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Table 15: Performance metrics for each method - Test Split. The metrics are presented as percentages, and the highest
score in each column is denoted in bold.

Model m-F1 M-F1 OV-F1 OV-P OV-R PC-F1 PC-P PC-R 0-1 mAP

Se
w

er

Xie et al. [19] 59.05 37.94 59.05 46.06 82.24 42.16 29.48 73.95 51.55 65.32
Chen et al. [1] 33.49 26.23 33.49 26.03 46.94 34.55 23.60 64.48 7.63 59.89
Hassan et al. [6] 12.57 6.27 12.57 7.33 44.12 6.83 3.67 50.00 0.00 7.35
Myrans et al. [13] 5.66 3.88 5.66 3.36 18.07 5.02 3.04 14.43 14.51 0.59

G
en

er
al

ResNet-101 [7] 53.91 37.94 53.91 40.19 81.85 43.46 28.89 87.70 39.38 74.99
KSSNet [18] 55.64 39.22 55.64 42.12 81.96 44.68 30.02 87.32 40.46 75.70
TResNet-M [16] 54.62 38.53 54.62 40.72 82.94 43.96 29.24 88.56 40.23 76.55
TResNet-L [16] 55.34 39.45 55.34 41.56 82.79 44.72 29.97 88.05 40.42 76.82
TResNet-XL [16] 55.08 38.98 55.08 41.21 83.01 44.34 29.61 88.23 40.74 76.61
Benchmark 61.26 42.35 61.26 46.90 88.30 46.22 32.24 81.61 51.59 77.79

Table 16: Per-class F1 score - Test Split. The metrics are presented as percentages, and the highest score in each column is
denoted in bold.

Model RB OB PF DE FS IS RO IN AF BE FO GR PH PB OS OP OK Normal

Se
w

er

Xie et al. [19] 23.47 71.12 34.63 23.51 77.25 9.99 16.14 31.33 39.59 39.93 6.29 49.22 34.61 24.09 14.27 27.05 69.85 90.62
Chen et al. [1] 24.54 57.24 16.85 11.65 67.47 6.09 29.99 23.03 26.47 37.67 5.62 24.84 31.53 8.58 11.01 29.58 56.46 3.59
Hassan et al. [6] 0.00 30.35 2.95 3.49 43.16 1.41 4.04 0.00 13.19 0.00 0.00 9.84 4.45 0.00 0.00 0.00 0.00 0.00
Myrans et al. [13] 1.63 5.60 1.71 1.46 8.18 0.36 0.60 1.02 4.03 2.93 0.21 3.16 0.82 0.89 0.31 0.16 9.28 27.48

G
en

er
al

ResNet-101 [7] 24.42 72.52 28.62 19.75 79.22 9.98 19.07 30.13 38.93 42.15 4.87 47.69 37.80 26.86 18.56 30.54 73.28 78.57
KSSNet [18] 26.06 73.34 29.89 19.64 80.56 10.83 19.84 31.47 40.59 43.50 5.24 50.88 40.74 26.39 20.55 32.84 74.38 79.29
TResNet-M [16] 24.78 72.54 28.94 20.96 79.87 10.89 18.52 31.14 39.64 41.39 4.90 47.97 40.11 24.99 18.34 34.68 73.90 79.91
TResNet-L [16] 24.78 72.93 28.68 20.62 79.60 12.01 18.20 32.29 40.43 42.56 5.11 49.97 43.33 28.13 19.43 38.68 73.41 79.88
TResNet-XL [16] 24.76 72.66 30.24 21.49 79.71 10.46 18.32 31.51 39.59 41.94 5.13 48.32 41.21 27.12 19.25 35.10 74.41 80.42
Benchmark 25.11 74.40 35.58 25.01 80.50 12.26 18.59 34.26 41.93 44.16 5.26 51.28 45.09 31.60 22.20 49.17 75.04 90.94

Table 17: Per-class F2 score - Test Split. The metrics are presented as percentages, and the highest score in each column is
denoted in bold.

Model RB OB PF DE FS IS RO IN AF BE FO GR PH PB OS OP OK Normal

Se
w

er

Xie et al. [19] 39.77 77.88 51.49 37.53 79.90 20.42 30.19 49.28 53.16 54.67 13.50 59.40 53.74 39.57 26.30 45.24 76.63 89.77
Chen et al. [1] 38.91 66.52 29.90 23.33 73.08 12.94 42.11 35.50 41.72 44.01 12.11 42.63 50.53 18.73 21.87 48.37 65.92 2.28
Hassan et al. [6] 0.00 52.14 7.07 8.28 65.50 3.45 9.53 0.00 27.53 0.00 0.00 21.43 10.44 0.00 0.00 0.00 0.00 0.0
Myrans et al. [13] 3.27 7.70 3.89 2.47 9.75 0.87 1.33 2.22 7.27 5.35 0.51 6.11 1.80 2.15 0.77 0.38 13.51 27.35

G
en

er
al

ResNet-101 [7] 42.95 83.92 48.25 37.06 87.22 21.11 35.87 50.06 58.23 60.37 11.18 64.81 58.83 47.12 35.24 51.76 82.63 70.41
KSSNet [18] 44.79 84.52 49.68 36.93 87.36 22.42 36.96 51.45 59.54 61.55 11.96 66.99 61.57 46.35 37.92 54.59 83.00 71.32
TResNet-M [16] 43.39 84.36 48.99 38.84 87.48 22.70 35.12 51.09 59.13 60.27 11.27 65.41 60.99 44.71 35.04 56.55 83.72 72.08
TResNet-L [16] 43.50 84.42 48.55 38.39 87.45 24.45 34.67 52.27 59.55 61.13 11.70 66.37 63.54 48.58 36.69 60.42 83.50 72.03
TResNet-XL [16] 43.39 84.22 50.14 39.42 87.43 22.00 34.89 51.39 59.15 60.64 11.74 65.47 61.83 47.45 36.31 56.76 83.52 72.74
Benchmark 43.35 83.82 52.94 39.69 86.76 24.70 34.96 53.41 59.45 61.05 11.94 66.05 64.00 47.39 36.79 65.41 82.72 90.35

Table 18: Per-class Precision score - Test Split. The metrics are presented as percentages, and the highest score in each
column is denoted in bold.

Model RB OB PF DE FS IS RO IN AF BE FO GR PH PB OS OP OK Normal

Se
w

er

Xie et al. [19] 13.95 62.14 22.40 14.49 73.20 5.40 9.09 19.50 27.77 27.54 3.33 38.28 21.72 14.58 8.10 16.20 60.87 92.09
Chen et al. [1] 15.19 46.43 9.75 6.35 59.82 3.24 20.27 14.52 16.45 30.38 2.97 14.65 19.38 4.51 6.02 17.96 45.57 91.35
Hassan et al. [6] 0.00 17.89 1.50 1.77 27.52 0.71 2.06 0.00 7.06 0.00 0.00 5.17 2.28 0.00 0.00 0.00 0.00 0.00
Myrans et al. [13] 0.89 3.86 0.88 0.87 6.46 0.18 0.31 0.54 2.32 1.67 0.11 1.75 0.43 0.45 0.16 0.08 6.09 27.70

G
en

er
al

ResNet-101 [7] 14.20 59.14 17.06 11.10 68.72 5.31 10.71 18.11 25.08 28.04 2.51 33.12 23.69 15.65 10.37 18.14 61.65 97.37
KSSNet [18] 15.36 60.10 17.96 11.03 71.31 5.82 11.20 19.11 26.52 29.22 2.71 36.33 26.05 15.36 11.66 19.73 63.39 97.46
TResNet-M [16] 14.45 58.81 17.21 11.86 69.76 5.83 10.36 18.86 25.58 27.19 2.52 33.21 25.54 14.40 10.23 21.09 61.81 97.59
TResNet-L [16] 14.43 59.44 17.05 11.64 69.23 6.50 10.15 19.73 26.33 28.26 2.64 35.40 28.32 16.53 10.89 24.18 61.10 97.62
TResNet-XL [16] 14.43 59.12 18.20 12.22 69.48 5.58 10.23 19.16 25.52 27.70 2.65 33.64 26.48 15.83 10.80 21.45 62.96 97.58
Benchmark 14.76 62.66 23.01 15.47 71.87 6.66 10.44 21.44 28.11 30.22 2.72 37.36 30.22 20.32 13.37 34.79 64.99 91.94
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Table 19: Per-class Recall score - Test Split. The metrics are presented as percentages, and the highest score in each column
is denoted in bold.

Model RB OB PF DE FS IS RO IN AF BE FO GR PH PB OS OP OK Normal

Se
w

er

Xie et al. [19] 74.02 83.15 76.24 62.29 81.77 66.99 71.98 79.72 68.91 72.53 57.16 68.90 85.11 69.27 60.00 81.99 81.93 89.21
Chen et al. [1] 63.81 74.59 61.83 70.35 77.37 51.41 57.64 55.55 67.74 49.56 52.39 81.56 84.47 88.48 63.96 83.86 74.21 1.83
Hassan et al. [6] 0.00 100.00 100.00 100.00 100.00 100.00 100.00 0.00 100.00 0.00 0.00 100.00 100.00 0.00 0.00 0.00 0.00 0.00
Myrans et al. [13] 9.96 10.26 26.37 4.55 11.17 12.34 7.19 10.26 15.62 11.87 8.63 16.13 8.98 33.61 18.49 7.69 19.42 27.26

G
en

er
al

ResNet-101 [7] 86.91 93.73 88.92 89.16 93.52 82.47 86.85 89.55 86.96 84.82 81.66 85.19 93.52 94.72 87.92 96.44 90.31 65.85
KSSNet [18] 85.98 94.07 88.92 89.34 92.58 78.25 87.07 89.21 86.46 85.09 81.66 84.91 93.42 93.52 86.79 97.75 89.96 66.83
TResNet-M [16] 86.95 94.64 91.02 90.03 93.42 82.03 87.22 89.21 87.95 86.62 84.75 86.34 93.38 94.36 89.06 97.56 91.85 67.66
TResNet-L [16] 87.64 94.34 90.20 90.16 93.61 79.00 87.48 88.93 86.99 86.19 82.74 84.94 92.20 94.24 90.00 96.62 91.93 67.60
TResNet-XL [16] 87.04 94.22 89.33 88.86 93.47 83.23 87.89 88.72 88.22 86.27 83.05 85.74 92.81 94.84 88.68 96.44 90.94 68.39
Benchmark 84.04 91.54 78.45 65.19 91.50 76.52 84.72 85.16 82.42 81.95 77.81 81.74 88.83 71.07 65.47 83.86 88.78 89.96

Table 20: Per-class AP score - Test Split. The metrics are presented as percentages, and the highest score in each column is
denoted in bold.

Model RB OB PF DE FS IS RO IN AF BE FO GR PH PB OS OP OK

Se
w

er

Xie et al. [19] 35.07 83.48 85.86 62.97 87.30 36.64 59.04 58.52 58.15 62.44 36.26 82.11 80.02 65.49 53.70 77.47 85.85
Chen et al. [1] 48.49 74.08 48.09 47.43 81.76 57.95 74.70 48.77 60.86 65.30 31.56 74.91 80.58 43.37 49.87 49.86 80.61
Hassan et al. [6] 6.16 26.79 0.33 3.60 35.10 1.17 1.25 3.16 5.62 5.14 0.44 9.23 4.17 0.00 1.57 2.52 18.69
Myrans et al. [13] 0.11 0.69 0.00 0.63 2.91 0.00 0.09 0.16 1.80 0.43 0.18 0.69 0.00 0.00 0.00 0.24 2.09

G
en

er
al

ResNet-101 [7] 55.25 90.20 88.04 71.96 93.32 65.63 78.98 65.69 71.40 77.78 47.33 90.72 88.05 65.34 52.55 79.33 93.32
KSSNet [18] 58.43 90.59 86.80 71.99 93.68 69.97 80.75 68.28 72.57 78.92 44.03 91.11 88.46 62.31 55.86 79.26 93.83
TResNet-M [16] 55.61 90.16 89.82 76.00 93.65 65.85 78.58 69.71 73.45 79.82 50.44 91.03 89.41 67.57 57.79 78.11 94.32
TResNet-L [16] 56.95 90.38 89.28 75.03 93.64 68.61 80.04 70.09 73.59 79.43 48.74 91.36 88.77 67.29 59.38 79.00 94.40
TResNet-XL [16] 56.64 90.00 89.17 75.66 93.68 63.87 79.70 68.90 73.62 79.80 48.14 91.33 88.83 69.51 59.38 79.96 94.17
Benchmark 56.99 90.46 89.89 75.09 93.70 70.74 80.20 70.81 73.99 79.96 48.21 92.21 89.08 72.70 62.57 81.33 94.55
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