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Overview
The Supplementary Material is structured as follows. In

Section 1, we show results obtained on the RobotCar Sea-
sons v2 and Extended CMU Seasons datasets split by query
condition. Section 2 contains additional quantitative re-
sults on the Pittsburgh 30k and Tokyo 24/7 datasets, as well
as additional results on the computation time split across
the feature extraction and feature matching processes. Sec-
tion 3 contains a variety of additional ablation studies, some
of them further demonstrating the robustness of our method,
while others detail experiments that might logically be ex-
pected and were conducted, but that were not fruitful. Sec-
tion 4 contains various qualitative results, showcasing both
challenging success cases of Patch-NetVLAD and some
failure cases. This section also contains examples of in-
correct dataset annotations, where Patch-NetVLAD actu-
ally found the correct match but this match was not within
the ground-truth matches due to errors in the ground-truth.
Finally, in Section 5 we describe in detail the six key bench-
mark datasets on which we evaluate Patch-NetVLAD.

1. Results Split by Condition on RobotCar Sea-
sons v2 and Extended CMU Seasons

RobotCar Seasons v2: Suppl. Table 1 contains results
obtained from the training split of the RobotCar Seasons v2
dataset split by condition. Tables 1 and 2 of the main paper
are summary statistics on the query set, where the different
conditions are weighted by the number of images contained
within each condition. Utilizing the training set allows us
to further split results by specific appearance change con-
ditions, providing an additional set of fine-grained compar-
isons between Patch-NetVLAD and existing state-of-the-art
over the main paper.

Patch-NetVLAD outperforms SuperGlue [12] by 1.3%
absolute recall on the tightest error thresholds (.25m trans-
lational error and 2 degrees orientation error) when con-

sidering the summary statistic. There are some conditions
where SuperGlue has a slight performance advantage for
the looser error thresholds, in particular the night traverses.
As stated in the Conclusions section of the main paper, it
would be interesting to train a neural network-based feature
matcher similar to SuperGlue that uses our proposed Patch-
NetVLAD features instead of the original SuperPoint [6]
features. This approach would likely yield more robust
matching than a standard mutual nearest neighbors match-
ing technique, which combined with outlier rejection will
likely yield a significant performance improvement.

Interestingly, while DELG performs well on datasets like
Nordland and Pittsburgh, both the global retrieval only as
well as the global + local re-ranking DELG perform rela-
tively poorly on RobotCar Seasons v2 where a low ground
truth pose error tolerances are required (Patch-NetVLAD
outperforms DELG global and local re-ranking by 4.6% and
7.0% absolute recall in the summary statistic respectively).
In future works, it would be interesting to investigate why
local re-ranking in this case worsens performance.

Extended CMU Seasons: In Suppl. Table 2 we simi-
larly show detailed results for the Extended CMU Seasons
dataset, split by Urban, Suburban and Park environments.
Patch-NetVLAD consistently outperforms all comparison
methods, including our competitive SuperGlue baseline and
DELG, on all conditions and all error thresholds by rel-
atively large margins, with two exceptions being the park
condition where SuperGlue performs slightly better for the
largest error threshold, and the suburban condition where
SuperGlue performs slightly better for the medium error
threshold.

2. Additional Quantitative Results
Additional Recall Plots: Fig. 3 in the main paper shows

the recall@N performance on the Mapillary validation set.
Similarly, Suppl. Fig. 1 shows the recall@N performance
for the Pittsburgh 30k and Tokyo 24/7 datasets.
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Supplementary Table 1. Performance comparison RobotCar Seasons v2
day conditions night conditions

dawn dusk OC-summer OC-winter rain snow sun night night-rain
m .25 / .50 / 5.0 .25 / .50 / 5.0 .25 / .50 / 5.0 .25 / .50 / 5.0 .25 / .50 / 5.0 .25 / .50 / 5.0 .25 / .50 / 5.0 .25 / .50 / 5.0 .25 / .50 / 5.0

deg 2 / 5 / 10 2 / 5 / 10 2 / 5 / 10 2 / 5 / 10 2 / 5 / 10 2 / 5 / 10 2 / 5 / 10 2 / 5 / 10 2 / 5 / 10

AP-GEM [11] 1.4 / 14.2 / 65.9 9.6 / 29.4 / 82.9 2.4 / 19.1 / 80.5 3.6 / 20.3 / 78.1 4.4 / 21.5 / 86.0 4.5 / 15.8 / 75.9 1.8 / 7.5 / 58.2 0.0 / 0.2 / 6.8 0.1 / 1.2 / 15.8
DenseVLAD [17] 4.5 / 24.3 / 79.6 12.5 / 38.9 / 89.1 3.8 / 27.4 / 90.8 4.1 / 27.1 / 85.6 5.4 / 29.0 / 91.4 6.7 / 25.5 / 85.1 3.2 / 11.0 / 67.1 1.4 / 2.7 / 23.2 0.6 / 5.2 / 29.8

NetVLAD [1] 2.2 / 16.8 / 73.3 11.4 / 31.0 / 85.9 3.2 / 21.5 / 90.9 4.1 / 22.6 / 84.0 4.2 / 22.2 / 89.4 5.2 / 20.1 / 80.8 2.4 / 10.4 / 70.3 0.2 / 1.2 / 9.1 0.3 / 0.9 / 8.8
DELG global [5] 1.6 / 10.9 / 66.4 8.9 / 23.9 / 81.3 2.1 / 16.5 / 77.6 3.5 / 18.5 / 73.6 3.9 / 20.5 / 87.9 3.6 / 13.5 / 73.5 1.0 / 6.4 / 59.6 0.2 / 0.7 / 7.6 0.1 / 1.6 / 13.8
DELG local [5] 1.7 / 10.4 / 78.3 2.5 / 7.3 / 76.8 1.1 / 8.9 / 84.2 1.2 / 9.1 / 83.2 1.2 / 4.5 / 76.8 3.5 / 10.9 / 80.8 3.3 / 12.6 / 85.2 1.4 / 7.6 / 38.6 2.4 / 11.9 / 53.0
SuperGlue [12] 4.3 / 24.6 / 84.8 12.7 / 40.3 / 88.6 5.0 / 31.5 / 95.0 4.5 / 30.2 / 88.6 5.9 / 30.1 / 91.8 7.0 / 25.4 / 87.2 3.3 / 17.1 / 83.9 0.5 / 2.2 / 27.9 0.9 / 5.4 / 31.8

Ours 4.8 / 29.4 / 86.2 13.5 / 41.9 / 89.5 5.3 / 33.5 / 94.5 6.3 / 32.7 / 89.8 5.9 / 29.3 / 92.1 7.8 / 27.3 / 87.9 4.8 / 20.1 / 83.4 0.5 / 2.7 / 24.9 1.0 / 5.4 / 30.8
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Supplementary Figure 1. Comparison with state-of-the-art. We show the Recall@N performance of Ours (Multi-RANSAC-Patch-
NetVLAD) compared to AP-GEM [11], DenseVLAD [17], NetVLAD [1] and SuperGlue [12], on the Pittsburgh (left) and Tokyo 24/7
(right) datasets.

Supplementary Table 2. Performance comparison Extended CMU
Seasons

Urban Suburban Park
m .25 / .50 / 5.0 .25 / .50 / 5.0 .25 / .50 / 5.0

deg 2 / 5 / 10 2 / 5 / 10 2 / 5 / 10

AP-GEM [11] 9.4 / 24.4 / 83.6 2.7 / 10.3 / 66.7 1.9 / 7.4 / 48.1
DenseVLAD [17] 14.1 / 35.5 / 87.3 5.2 / 18.8 / 80.1 5.1 / 19.4 / 72.2

NetVLAD [1] 12.1 / 31.5 / 91.3 3.7 / 14.0 / 78.4 2.9 / 10.9 / 62.0
DELG global [5] 7.6 / 21.1 / 82.6 2.5 / 9.7 / 69.4 1.2 / 4.8 / 41.4
DELG local [5] 6.3 / 18.2 / 89.4 4.1 / 17.0 / 96.6 7.1 / 29.0 / 93.6
SuperGlue [12] 17.1 / 43.6 / 96.9 7.5 / 30.5 / 96.5 7.5 / 30.5 / 96.5

Ours 19.2 / 48.0 / 97.2 8.2 / 28.8 / 97.0 9.5 / 34.9 / 94.3

Computational Time Requirements: Fig. 4 of the
main paper shows the number of seconds required to pro-
cess each query by a variety of our system configurations,
as well as SuperGlue and DELG. The processing times
presented in Fig. 4 of the main paper show the accumu-
lated times of feature extraction and feature matching. In
Suppl. Fig. 2 we show the compute times split into feature
extraction time only and feature matching time only; as well
as the accumulated time.

3. Further Ablation Studies

Ablation of Multi-Scale Fusion Weights and Patch
Sizes: In Fig. 6 of the main paper, we demonstrated
that Patch-NetVLAD is robust to the choice of particular
patch sizes that are fused in our multi-scale approach. In

Suppl. Table 3, we further validate that our proposed multi-
scale fusion of spatial scores across several patch sizes is
robust to changes in patch size and weightings by present-
ing results for the Mapillary dataset. Note that, as stated in
the main paper, the set of weights used across all experi-
ments and all datasets was determined using a grid-search
on the training set of the RobotCar Seasons v2 dataset.

While we fuse three patch sizes in the main paper, our
method is not constrained to fusing any particular number
of patch sizes. An investigation regarding this is shown in
Suppl. Table 4 – there all patch sizes are fused with equal
weights for simplicity. An interesting observation is that
increasing the number of different patch sizes used (from
three up to five) does not improve the recall performance
beyond the best combination of three patch sizes. We can
infer that the span of patch sizes (the difference between the
smallest size and the largest size) is more important than the
number of patch sizes used.

Early Match Fusion: In Section 3.5 of the main paper,
we describe our multi-scale fusion approach that merges the
spatial scores obtained from different patch sizes. An alter-
native to this post-processing fusion is an early fusion where
mutual nearest neighbors (Section 3.3 of the main paper) are
found across patches of different scales, and a joint spatial
score is calculated from all these mutual nearest neighbors.

However, we found that this early fusion approach does
not work as well as the proposed post-processing fusion.
Specifically, on the Mapillary validation set, we find that
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Supplementary Figure 2. Computational time requirements. The number of seconds required to process each query are shown on the
x-axis, with the resulting R@1 shown on the y-axis, for the Mapillary dataset. (a) indicates the times taken for feature extraction only,
while (b) shows the feature matching time. In (c) we show the combined time (as in Fig 4 in the main paper). Triangles indicate single-scale
Patch-NetVLAD, while stars indicate multi-scale Patch-NetVLAD. Filled symbols are used for RANSAC matching, while hollow symbols
are used for the rapid spatial verification. The color indicates varying PCA dimensions.

Supplementary Table 3. Ablation of Multi-Scale Fusion Weights
(R@1)

Weights / Patch sizes 2 / 5 / 8 2 / 4 / 6 2 / 6 / 10
0.33 / 0.33 / 0.33 79.7 78.6 78.8

0.2 / 0.6 / 0.2 79.1 78.5 78.4
0.45 / 0.15 / 0.4 79.5 78.9 78.8
0.45 / 0.35 / 0.2 78.8 78.1 79.1

Supplementary Table 4. Ablation of the Number of Fused Patch
Sizes

Patch sizes Recall@1
1 / 3 / 5 78.0
2 / 5 / 8 79.7
3 / 5 / 7 79.3
4 / 5 / 6 78.2

1 / 2 / 3 / 4 77.3
1 / 3 / 5 / 7 78.5
2 / 4 / 6 / 8 78.9

1 / 3 / 5 / 7 / 9 79.5
2 / 4 / 6 / 8 / 10 78.8

the early fusion approach results in R@1: 77.2%, R@5:
85.3%, and R@10: 87.3%. This compares to R@1: 79.5%,
R@5: 86.2% and R@10: 87.7% using our proposed post-
processing fusion.

Other Pooling Strategies: We use NetVLAD pooling
to aggregate patch features into a single patch descriptor
in our proposed approach. Instead of NetVLAD pooling,
other pooling strategies such as max-pooling [16] and sum-
pooling [2] have been proposed in the literature. Our spatial
scoring system based on patch-based matching is in prin-
ciple applicable with alternative pooling strategies. How-
ever, we found that patch-based aggregation does not per-
form well when applied to these pooling strategies: patch-
level average pooling of VGG’s Conv-5 layer (all else be-
ing equal) improves performance from 60.8% R@1 (vanilla
NetVLAD on Mapillary dataset) to 73.6%, which com-
pares to 79.5% using patch-level VLAD pooling (Patch-

NetVLAD). Patch-level max-pooling similarly leads to de-
creased performance when compared to Patch-NetVLAD
(R@1: 74.5%). In summary, our Patch-NetVLAD de-
scription significantly outperforms those alternative pool-
ing strategies. Further investigation will be required to gain
a deeper understanding of the complementary nature of the
underlying pooling strategies and our proposed patch-based
aggregation.

Patch Crops in the Image Space Instead of Feature
Space: In Patch-NetVLAD, pooling is performed from a
set of patches in the feature space of an image. One could
instead perform forward passes on patch-crops in the image
space. The main problem with this approach is that process-
ing overlapping patches is prohibitive in terms of compute
and storage (as each patch needs to be separately passed
through VGG). However, overlapping patches are crucial
for achieving high task performance – we found that over-
lapping patches are key to achieving viewpoint invariance.
Therefore, performing forward passes on patch-crops in the
image space is not a viable alternative to our proposed pool-
ing of patches in the feature space.

Matching Across Different Patch Sizes: In the pro-
posed method we match patches with other patches of the
same size, but there is the possibility to match between
patches of different sizes. For instance, a patch of size 2x2
could find a nearest neighbor match to a patch of size 5x5.
Experiments revealed that such a cross-patch-size match-
ing leads to sub-optimal performance: R@1 reduces from
79.5% to 78.1%. In future works, we would like to explore
other matching strategies such as a coarse-to-fine matching
scheme. We would also note that, conceptually, images of
different zoom levels should not be matched, as they could
have been taken from different places.

Complementarity of Patch Sizes: Suppl. Fig. 3 shows
examples of correspondences split by patch size. We ran-
domly sampled 10 correspondences per patch size and indi-
cate the area covered by each patch. We include examples
where small/medium/large patch sizes (i.e. dp = {2, 5, 8})
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Patch size = 2 Patch size = 5 Patch size = 8

Supplementary Figure 3. Complementarity of Patch Sizes. The three columns indicate different patch sizes, from small (i.e. dp = 2)
over medium (i.e. dp = 5) to large (i.e. dp = 8). It can be observed that a small patch size is able to find matches where smaller spatial
context is more intuitive, for example, near boundaries between sky and buildings (first row, left column) or between sky and power lines
(third row, left column). On the other hand, a larger patch size provides complementary cues by spanning over large building surfaces,
enabling matching despite significant illumination variations (second row, right column). Note that the size of the squares does not reflect
the receptive field sizes of the underlying features; different sizes are used for visualization purposes only.

result in particularly good matches, as well as one example
(the bottom row) where all patch sizes work well for the
same image pair but in distinct areas of the image.

4. Additional Qualitative Results
Suppl. Figs. 4, 5, 6 and 7 contain additional qualitative

results on the Mapillary, Nordland, Pittsburgh and Tokyo
24/7 datasets respectively. For all these results, correct
matches are represented with green borders, and incor-
rect matches with red borders. We show success cases of
Patch-NetVLAD where all other methods failed to retrieve
a correct match (with the exception of Tokyo 24/7, where
DELG is also able to identify the correct image whenever
Patch-NetVLAD is able to). Besides success cases, we
also include failure cases where DELG and our proposed
competitive SuperGlue baseline find the correct match, but
Patch-NetVLAD does not localize correctly. Many of these
matches are challenging to recognize as the same place,
even for a human observer.

These match example visualizations lead to interesting
observations. For example, in Suppl. Fig. 6 (Pittsburgh
dataset), we note that a large proportion of cases where
Patch-NetVLAD succeeds and DELG/Superglue fail are for

images containing a large proportion of sky. We notice that
SuperGlue is attempting to find correspondences between
points corresponding to clouds in these images. Patch-
NetVLAD, on the other hand, uses larger patch-level fea-
tures which typically include clouds and a ground level fea-
ture. Suppl. Fig 3 illustrates this effect by showing the cor-
responding patch sizes at multiple scales superimposed onto
the original image.

In Suppl. Fig. 8, we showcase some examples where
all methods fail to localize correctly – those examples may
guide future research to address these open challenges. We
also note the ground-truth errors in the Pittsburgh dataset.
In the bottom two rows of the Pittsburgh failure cases, both
DELG and Patch-NetVLAD are actually finding the correct
match but is being incorrectly classified as a failure due to
errors in the Pittsburgh ground-truth.

Finally, Suppl. Fig. 9 provides some examples of the
Pittsburgh and Mapillary datasets where a manual inspec-
tion of Patch-NetVLAD’s failure cases has shown that
Patch-NetVLAD actually found a correct place match,
which indicates that either the error tolerances are too tight,
or that some ground-truth locations are incorrectly anno-
tated.
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Supplementary Figure 4. Feature correspondences for the Mapillary dataset.
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Supplementary Figure 5. Feature correspondences for the Nordland dataset.
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Supplementary Figure 6. Feature correspondences for the Pittsburgh dataset.
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Supplementary Figure 7. Feature correspondences for the Tokyo 24/7 dataset.
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Supplementary Figure 8. Cases where all methods fail. We hope that these cases inform future research in VPR. Failure cases on Nordland
(top left block) are mainly due to an unseen environment (for learning-based methods) and significant perceptual aliasing, i.e. different
places look very similar. Similarly, on the Mapillary dataset (bottom left block) both SuperGlue and Patch-NetVLAD retrieve places
that have a very similar structure to the query – consider for example the last row where both the query and retrieved image from Patch-
NetVLAD have buildings on the left, a road in the middle, and trees on the right. On the Pittsburgh dataset (top right block), an additional
challenge are the extreme viewpoint variations. Failures on Tokyo 24/7 (bottom right block) are mainly due to extreme viewpoint and
appearance changes, as the query images are captured at night-time while reference images are captured at day-time. As mentioned in the
Conclusions, we think that adding semantic information might aid Patch-NetVLAD in these extremely challenging cases.

5. Detailed Dataset Description

In this Section, we further detail the datasets that were
introduced in Section 4.2 of the main paper. To recap,
we evaluate Patch-NetVLAD on six of the key benchmark
datasets: Nordland [13], Pittsburgh [18], Tokyo24/7 [17],
Mapillary Streets [19], Oxford Seasons v2 [9, 15] and Ex-
tended CMU Seasons [3, 15]. Collectively the datasets en-
compass a wide and challenging range of viewpoint change,
appearance change and acqusition methods.

Nordland: The Nordland dataset [13] is recorded from
a train traveling 728km through Norway in four different
seasons. The four recordings are aligned frame-by-frame
using available GPS information. We use the summer and
winter traverses as the reference and query sets respectively,
as these traverses have the highest appearance dissimilarity
and are typically considered in the literature [4, 10, 8, 7].
As in [13], we use the entire 728km traverse and subsample
the video at 1 fps. Like previous works using this dataset [4,
14, 8, 7], we remove all tunnels and times when the train is
stopped, which resulted in 27,592 images for both reference
and query sets.

RobotCar Seasons v2: The RobotCar dataset [9] is a
collection of traverses through Oxford, recorded with an
autonomous car across multiple times of day and seasons.
RobotCar Seasons v2 [15] is a standardized benchmark sub-
set of the RobotCar dataset, where the reference images are
recorded in overcast conditions, and the query images are
captured at a variety of times and conditions: dawn, dusk,
sun, rain, overcast summer, overcast winter, snow, night
and night-rain. Similarly to Nordland, RobotCar Seasons
v2 mainly captures appearance changes, while viewpoint
changes are relatively minor.

An important detail of the structure of the RobotCar Sea-
sons v2 dataset is that the reference images of the origi-
nal RobotCar Seasons v2 dataset is split into 49 disjoint
submaps which comprise the full traverse. Query images
are captured from 17 of these submaps for all conditions
and furthermore, for each query image the identity of the
corresponding submap is provided. For our evaluation, we
merge all 49 submaps for the reference traverse and local-
ize each query image against the whole merged reference
traverse without using the given submap identity provided
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Supplementary Figure 9. Cases where Patch-NetVLAD retrieved a correct match, but this match was deemed outside the error tolerance,
suggesting either that the error tolerances are too tight (compared to what a human would consider as the same place), or the possibility of
slight ground truth errors. The left columns contain examples from the Mapillary dataset, while the right columns contain examples from
the Pittsburgh dataset.

with the dataset. This presents a substantially more chal-
lenging image retrieval task which showcases the difference
between our proposed method and alternative approaches.

Extended CMU Seasons: CMU Seasons [3] is simi-
lar to the RobotCar dataset: a car was driven around an
8.8km long route in Pittsburgh covering urban, residential,
and park-like settings. Extended CMU Seasons [15] is a
subset of the original CMU Seasons dataset that has been
standardized for benchmark purposes. Extended CMU Sea-
sons covers a single reference set and multiple query tra-
verses under varying seasonal conditions spanning a one-
year time frame. Unlike the RobotCar Seasons, CMU does
not contain images that were captured at nighttime.

Pittsburgh: The Pittsburgh dataset [18] contains 250k
images collected via Google Street View. The reference and
query images are captured at different times of the day and
several years apart. For each place, 24 perspective images
(two pitch and twelve yaw directions) are generated, which
leads to high variations in both viewpoints and appearance.
We use the Pitts 30k subset as described in [1], which con-
tains 10k reference images and 6816 query images.

Tokyo 24/7: The Tokyo 24/7 dataset [17] contains im-
ages at 125 distinct locations captured with smartphones
at three different viewing directions and at three different
times of the day. Contrary to the Nordland and Pittsburgh
datasets, Tokyo 24/7 includes nighttime images.

Mapillary Street Level Sequences (MSLS): The
MSLS dataset [19] has recently been introduced with the

aim of facilitating lifelong place recognition research. It
contains over 1.6 million images recorded in 30 major cities
across the globe in urban and suburban areas over a period
of 7 years. Compared to the other datasets, it includes varia-
tions in all of the following: geographical diversity, season,
time of day, viewpoint, and weather. Similarly to RobotCar
Seasons v2 and Extended CMU Seasons, it contains a pub-
lic validation set and a withheld test set. While the dataset
is suited for sequence-based methods, we only evaluate the
image-to-image task.
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