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Overview

The Supplementary Material is structured as follows. In
Section 1, we show results obtained on the RobotCar Sea-
sons v2 and Extended CMU Seasons datasets split by query
condition. Section 2 contains additional quantitative re-
sults on the Pittsburgh 30k and Tokyo 24/7 datasets, as well
as additional results on the computation time split across
the feature extraction and feature matching processes. Sec-
tion 3 contains a variety of additional ablation studies, some
of them further demonstrating the robustness of our method,
while others detail experiments that might logically be ex-
pected and were conducted, but that were not fruitful. Sec-
tion 4 contains various qualitative results, showcasing both
challenging success cases of Patch-NetVLAD and some
failure cases. This section also contains examples of in-
correct dataset annotations, where Patch-NetVLAD actu-
ally found the correct match but this match was not within
the ground-truth matches due to errors in the ground-truth.
Finally, in Section 5 we describe in detail the six key bench-
mark datasets on which we evaluate Patch-NetVLAD.

1. Results Split by Condition on RobotCar Sea-
sons v2 and Extended CMU Seasons

RobotCar Seasons v2: Suppl. Table 1 contains results
obtained from the training split of the RobotCar Seasons v2
dataset split by condition. Tables 1 and 2 of the main paper
are summary statistics on the query set, where the different
conditions are weighted by the number of images contained
within each condition. Utilizing the training set allows us
to further split results by specific appearance change con-
ditions, providing an additional set of fine-grained compar-
isons between Patch-NetVLAD and existing state-of-the-art
over the main paper.

Patch-NetVLAD outperforms SuperGlue [12] by 1.3%
absolute recall on the tightest error thresholds (.25m trans-
lational error and 2 degrees orientation error) when con-

sidering the summary statistic. There are some conditions
where SuperGlue has a slight performance advantage for
the looser error thresholds, in particular the night traverses.
As stated in the Conclusions section of the main paper, it
would be interesting to train a neural network-based feature
matcher similar to SuperGlue that uses our proposed Patch-
NetVLAD features instead of the original SuperPoint [6]
features. This approach would likely yield more robust
matching than a standard mutual nearest neighbors match-
ing technique, which combined with outlier rejection will
likely yield a significant performance improvement.

Interestingly, while DELG performs well on datasets like
Nordland and Pittsburgh, both the global retrieval only as
well as the global + local re-ranking DELG perform rela-
tively poorly on RobotCar Seasons v2 where a low ground
truth pose error tolerances are required (Patch-NetVLAD
outperforms DELG global and local re-ranking by 4.6% and
7.0% absolute recall in the summary statistic respectively).
In future works, it would be interesting to investigate why
local re-ranking in this case worsens performance.

Extended CMU Seasons: In Suppl. Table 2 we simi-
larly show detailed results for the Extended CMU Seasons
dataset, split by Urban, Suburban and Park environments.
Patch-NetVLAD consistently outperforms all comparison
methods, including our competitive SuperGlue baseline and
DELG, on all conditions and all error thresholds by rel-
atively large margins, with two exceptions being the park
condition where SuperGlue performs slightly better for the
largest error threshold, and the suburban condition where
SuperGlue performs slightly better for the medium error
threshold.

2. Additional Quantitative Results

Additional Recall Plots: Fig. 3 in the main paper shows
the recall@N performance on the Mapillary validation set.
Similarly, Suppl. Fig. 1 shows the recall@N performance
for the Pittsburgh 30k and Tokyo 24/7 datasets.



Supplementary Table 1. Performance comparison RobotCar Seasons v2

day conditions night conditions
dawn dusk OC-summer OC-winter rain Snow sun night night-rain
m | .25/.50/5.0 .25/.50/5.0 25/.50/5.0 .25/.50/5.0 .25/.50/5.0 .25/.50/5.0 .25/.50/5.0 25/.50/5.0 .25/.50/5.0
deg 2/5/10 2/5/10 2/5/10 2/5/10 2/5/10 2/5/10 2/5/10 2/5/10 2/5/10
AP-GEM [11] 1.4/142/659 | 9.6/294/829 | 24/19.1/80.5 | 3.6/203/78.1 | 44/21.5/86.0 | 45/15.8/759 | 1.8/7.5/58.2 0.0/02/6.8 | 0.1/127/158
DenseVLAD [17] | 4.5/24.3/79.6 | 12.5/38.9/89.1 | 3.8/27.4/90.8 | 41/27.1/85.6 | 5.4/29.0/91.4 | 6.7/255/85.1 | 3.2/11.0/67.1 | 1.4/2.7/232 | 0.6/52/29.8
NetVLAD [1] 22/168/73.3 | 11.4/31.0/85.9 | 32/21.5/90.9 | 4.1/22.6/84.0 | 42/22.2/89.4 | 52/20.1/80.8 | 24/10.4/70.3 | 0.2/12/9.1 | 03 /09 /8.8
DELG global [5] | 1.6/10.9/66.4 | 89/23.9/81.3 | 2.1/165/77.6 | 3.5/18.5/73.6 | 3.9/20.5/87.9 | 3.6/13.5/73.5 | 1.0/6.4/59.6 | 02/0.7/7.6 | 0.1/1.6/13.8
DELG local [5] | 1.7/10.4/783 | 2.5/7.3/76.8 1.1/89/842 | 12/9.1/832 | 1.2/45/76.8 | 3.5/10.9/80.8 | 3.3/12.6/852 | 1.4/7.6/38.6 | 2.4/11.9/53.0
SuperGlue [12] | 4.3/24.6/84.8 | 12.7/40.3/88.6 | 50/31.5/95.0 | 45/30.2/88.6 | 59/30.1/91.8 | 7.0/25.4/87.2 | 3.3/17.1/83.9 | 0.5/22/279 | 09/54/31.8
Ours 4.8/29.4/86.2 | 13.5/41.9/89.5 | 5.3/33.5/94.5 | 6.3/32.7/89.8 | 59/29.3/92.1 | 7.8/27.3/87.9 | 4.8/20.1/83.4 | 0.5/2.7/249 | 1.0/54/30.8
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Supplementary Figure 1. Comparison with state-of-the-art. We show the Recall@N performance of Ours (Multi-RANSAC-Patch-
NetVLAD) compared to AP-GEM [11], DenseVLAD [17], NetVLAD [1] and SuperGlue [12], on the Pittsburgh (left) and Tokyo 24/7

(right) datasets.

Supplementary Table 2. Performance comparison Extended CMU
Seasons

Urban Suburban Park
m 25/.50/5.0 25/.50/5.0 25/.50/5.0
deg 2/5/10 2/5/710 2/5/710
AP-GEM [11] 9.4/24.4/83.6 | 27/ 103 /66.7 | 1.9/7.4/48.1

DenseVLAD [17]
NetVLAD [1]

14.1/355/87.3
12.1/31.5/91.3

5.2/18.8/80.1
3.7/14.0/78.4

5.1/19.4/72.2
2.9/10.9/62.0

DELG global [5] | 7.6/21.1/82.6 | 25/9.7/69.4 | 12/48/414
DELG local [5] | 6.3/182/89.4 | 4.1/17.0/96.6 | 7.1/29.0/93.6
SuperGlue [12] | 17.1/43.6/969 | 7.5/30.5/96.5 | 7.5/30.5/96.5

Ours 19.2/48.0/97.2 | 8.2/28.8/97.0 | 9.5/34.9/943
Computational Time Requirements: Fig. 4 of the

main paper shows the number of seconds required to pro-
cess each query by a variety of our system configurations,
as well as SuperGlue and DELG. The processing times
presented in Fig. 4 of the main paper show the accumu-
lated times of feature extraction and feature matching. In
Suppl. Fig. 2 we show the compute times split into feature
extraction time only and feature matching time only; as well
as the accumulated time.

3. Further Ablation Studies

Ablation of Multi-Scale Fusion Weights and Patch
Sizes: In Fig. 6 of the main paper, we demonstrated
that Patch-NetVLAD is robust to the choice of particular
patch sizes that are fused in our multi-scale approach. In

Suppl. Table 3, we further validate that our proposed multi-
scale fusion of spatial scores across several patch sizes is
robust to changes in patch size and weightings by present-
ing results for the Mapillary dataset. Note that, as stated in
the main paper, the set of weights used across all experi-
ments and all datasets was determined using a grid-search
on the training set of the RobotCar Seasons v2 dataset.

While we fuse three patch sizes in the main paper, our
method is not constrained to fusing any particular number
of patch sizes. An investigation regarding this is shown in
Suppl. Table 4 — there all patch sizes are fused with equal
weights for simplicity. An interesting observation is that
increasing the number of different patch sizes used (from
three up to five) does not improve the recall performance
beyond the best combination of three patch sizes. We can
infer that the span of patch sizes (the difference between the
smallest size and the largest size) is more important than the
number of patch sizes used.

Early Match Fusion: In Section 3.5 of the main paper,
we describe our multi-scale fusion approach that merges the
spatial scores obtained from different patch sizes. An alter-
native to this post-processing fusion is an early fusion where
mutual nearest neighbors (Section 3.3 of the main paper) are
found across patches of different scales, and a joint spatial
score is calculated from all these mutual nearest neighbors.

However, we found that this early fusion approach does
not work as well as the proposed post-processing fusion.
Specifically, on the Mapillary validation set, we find that
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Supplementary Figure 2. Computational time requirements. The number of seconds required to process each query are shown on the
X-axis, with the resulting R@1 shown on the y-axis, for the Mapillary dataset. (a) indicates the times taken for feature extraction only,
while (b) shows the feature matching time. In (c) we show the combined time (as in Fig 4 in the main paper). Triangles indicate single-scale
Patch-NetVLAD, while stars indicate multi-scale Patch-NetVLAD. Filled symbols are used for RANSAC matching, while hollow symbols
are used for the rapid spatial verification. The color indicates varying PCA dimensions.

Supplementary Table 3. Ablation of Multi-Scale Fusion Weights
(R@1)

Weights / Patch sizes | 2/5/8 | 2/4/6 | 2/6/10
0.33/0.33/0.33 79.7 78.6 78.8
02/0.6/0.2 79.1 78.5 78.4
0.45/0.15/04 79.5 78.9 78.8
0.45/0.35/0.2 78.8 78.1 79.1

Supplementary Table 4. Ablation of the Number of Fused Patch
Sizes

Patch sizes Recall@1
1/3/5 78.0
2/5/8 79.7
3/5/17 79.3
4/5/6 78.2
1/2/3/4 71.3
1/3/5/117 78.5

2/4/6/8 78.9

1/3/5/7/9 79.5

2/4/6/8/10 78.8

the early fusion approach results in R@1: 77.2%, R@5:
85.3%, and R@10: 87.3%. This compares to R@1: 79.5%,
R@5: 86.2% and R@10: 87.7% using our proposed post-
processing fusion.

Other Pooling Strategies: We use NetVLAD pooling
to aggregate patch features into a single patch descriptor
in our proposed approach. Instead of NetVLAD pooling,
other pooling strategies such as max-pooling [16] and sum-
pooling [2] have been proposed in the literature. Our spatial
scoring system based on patch-based matching is in prin-
ciple applicable with alternative pooling strategies. How-
ever, we found that patch-based aggregation does not per-
form well when applied to these pooling strategies: patch-
level average pooling of VGG’s Conv-5 layer (all else be-
ing equal) improves performance from 60.8% R@1 (vanilla
NetVLAD on Mapillary dataset) to 73.6%, which com-
pares to 79.5% using patch-level VLAD pooling (Patch-

NetVLAD). Patch-level max-pooling similarly leads to de-
creased performance when compared to Patch-NetVLAD
R@1: 74.5%). In summary, our Patch-NetVLAD de-
scription significantly outperforms those alternative pool-
ing strategies. Further investigation will be required to gain
a deeper understanding of the complementary nature of the
underlying pooling strategies and our proposed patch-based
aggregation.

Patch Crops in the Image Space Instead of Feature
Space: In Patch-NetVLAD, pooling is performed from a
set of patches in the feature space of an image. One could
instead perform forward passes on patch-crops in the image
space. The main problem with this approach is that process-
ing overlapping patches is prohibitive in terms of compute
and storage (as each patch needs to be separately passed
through VGG). However, overlapping patches are crucial
for achieving high task performance — we found that over-
lapping patches are key to achieving viewpoint invariance.
Therefore, performing forward passes on patch-crops in the
image space is not a viable alternative to our proposed pool-
ing of patches in the feature space.

Matching Across Different Patch Sizes: In the pro-
posed method we match patches with other patches of the
same size, but there is the possibility to match between
patches of different sizes. For instance, a patch of size 2x2
could find a nearest neighbor match to a patch of size 5x5.
Experiments revealed that such a cross-patch-size match-
ing leads to sub-optimal performance: R@1 reduces from
79.5% to 78.1%. In future works, we would like to explore
other matching strategies such as a coarse-to-fine matching
scheme. We would also note that, conceptually, images of
different zoom levels should not be matched, as they could
have been taken from different places.

Complementarity of Patch Sizes: Suppl. Fig. 3 shows
examples of correspondences split by patch size. We ran-
domly sampled 10 correspondences per patch size and indi-
cate the area covered by each patch. We include examples
where small/medium/large patch sizes (i.e. d, = {2,5,8})



Supplementary Figure 3. Complementarity of Patch Sizes. The three columns indicate different patch sizes, from small (i.e. dp = 2)
over medium (i.e. dp = 5) to large (i.e. dp = 8). It can be observed that a small patch size is able to find matches where smaller spatial
context is more intuitive, for example, near boundaries between sky and buildings (first row, left column) or between sky and power lines
(third row, left column). On the other hand, a larger patch size provides complementary cues by spanning over large building surfaces,
enabling matching despite significant illumination variations (second row, right column). Note that the size of the squares does not reflect
the receptive field sizes of the underlying features; different sizes are used for visualization purposes only.

result in particularly good matches, as well as one example
(the bottom row) where all patch sizes work well for the
same image pair but in distinct areas of the image.

4. Additional Qualitative Results

Suppl. Figs. 4, 5, 6 and 7 contain additional qualitative
results on the Mapillary, Nordland, Pittsburgh and Tokyo
24/7 datasets respectively. For all these results, correct
matches are represented with green borders, and incor-
rect matches with red borders. We show success cases of
Patch-NetVLAD where all other methods failed to retrieve
a correct match (with the exception of Tokyo 24/7, where
DELG is also able to identify the correct image whenever
Patch-NetVLAD is able to). Besides success cases, we
also include failure cases where DELG and our proposed
competitive SuperGlue baseline find the correct match, but
Patch-NetVLAD does not localize correctly. Many of these
matches are challenging to recognize as the same place,
even for a human observer.

These match example visualizations lead to interesting
observations. For example, in Suppl. Fig. 6 (Pittsburgh
dataset), we note that a large proportion of cases where
Patch-NetVLAD succeeds and DELG/Superglue fail are for

images containing a large proportion of sky. We notice that
SuperGlue is attempting to find correspondences between
points corresponding to clouds in these images. Patch-
NetVLAD, on the other hand, uses larger patch-level fea-
tures which typically include clouds and a ground level fea-
ture. Suppl. Fig 3 illustrates this effect by showing the cor-
responding patch sizes at multiple scales superimposed onto
the original image.

In Suppl. Fig. 8, we showcase some examples where
all methods fail to localize correctly — those examples may
guide future research to address these open challenges. We
also note the ground-truth errors in the Pittsburgh dataset.
In the bottom two rows of the Pittsburgh failure cases, both
DELG and Patch-NetVLAD are actually finding the correct
match but is being incorrectly classified as a failure due to
errors in the Pittsburgh ground-truth.

Finally, Suppl. Fig. 9 provides some examples of the
Pittsburgh and Mapillary datasets where a manual inspec-
tion of Patch-NetVLAD’s failure cases has shown that
Patch-NetVLAD actually found a correct place match,
which indicates that either the error tolerances are too tight,
or that some ground-truth locations are incorrectly anno-
tated.



