Supplementary Material

1. Detailed Running Speed

We give detailed report on decoding time on our PyTorch
implementation. Extending Table 2 and Table 3 in the main
body, latency for each process averaged on Kodak and Tec-
nick is shown in Table 1. It is apparent that for all serial
models, calculating context features and entropy parame-
ters is the bottleneck, which takes more than 95% decod-
ing time. By adopting the proposed parallel context model,
Minnen2018’s average decoding speed increases 44.6 times
on Kodak (small images) and 52.1 times on Tecnick (large
images). Meanwhile, Cheng2020 also speeds up 18.5 and
20.4 times tested on the two datasets due to a parallel con-
text model.

We also test above mentioned models on CPUs as a ref-
erence (see Table 2). Though we mainly aim to improve the
decoding efficiency on parallel devices, our parallel context
model can still perform well on CPUs because of a suffi-
cient use of matrix librarys e.g. Intel MKL, which is very
encouraging. We measure the speeds by running our Py-
Torch implementation on Intel Xeon E5-2620.

2. More RD Curves

For completeness, we evaluate all models on Tecnick.
Figure 4 shows the results. Compared with a channel con-
ditioned solution Minnen2020, Cheng2020 with proposed
checkerboard context model performs slightly worse in the
low bit rate but better in the high bit rate. This perhaps
because GMM cannot estimate the density precisely when
using less coding channels (N = 128 in our case), as de-
scribed in the original Cheng2020 paper. On the other hand,
Minnen2018 with checkerboard context model even slightly
outperforms original Minnen2018 baseline in higher bit
rates. It further proves that a checkerboard-shaped convo-
lution can extract more causal relationship and helps save
more rate, especially in larger images which have more
smooth area with more spatial redundancy.

We also optimize our models for MS-SSIM with D =
1 — MSSSIM(x, &) and test all models with MS-SSIM.
To train models for MS-SSIM optimization, we set A
to {1,3,16} for low bit rate models (N = 128) and
{40, 120,360} for high rate models (N = 192). Figure 5
shows the results tested on Kodak.

3. Cheap Operations for Parallel En/De-coding
3.1. Multiplexer: Generating 4. from g

As described in the main body, we generate gp,jr and
byt to perform a one-pass encoding. To implement it we
further define a multiplexer operation MUX:

Qi Yi € Yanchor

Bi, otherwise

i), - |

where inputs « and 3 are feature maps with the same sizes
H x W x M as §. So we can simply calculate gy, and
bn.ie with below formula:

Qhalf = MUX(@? 0)
bhalf = MUX(bmapa 0)

where by, € REXWXM g the feature map with every
H x W locations filled with the M -element bias vector b.

Since we do not want the newly introduced multiplexer
operation slow down the encoding process, it must be elab-
orately arranged as a series of light operations like slicing or
viewing operators in PyTorch. We provide two of practical
ways to implement the multiplexer.

3.1.1 Using slice-assign operations

For frameworks such as PyTorch and TensorFlow support-
ing slice-and-assign operators, we simply use such opera-
tors with a slicing step of 2 to mix the anchors and non-
anchors input into the multiplexer. It could be a piece of
code like:

mix = MUX(alpha, beta)

mix = clone (alpha)

mix[..., 1::2, 0::2] = beta[..., 1::2, 0::
mix[..., 0::2, 1::2] = beta[..., 0::2, 1:

3.1.2 Using slicing and concatenating

For frameworks which do not support slice-assign opera-
tions, also we could mix anchors and non-anchors with
shape-transforming operations like reshaping, permuting,
slicing or concatenating. See Figure 1. Firstly, we flat-
ten each 2 x 2 patches using a space-to-depth operator (or

2]

:2]

. hyper arameter latent total speed
architecture (N=192) syntlileiis g;lculation synthesis (ms) (l\zpps)
Kodak, image size: 768 x 512, feature size: 48 x 32 x M
Ballé2018 1.30 - - 25.04 26.34 14.93
w/o context 1.32 2.23 8.4% 22.85 26.41 14.89
Minnen2018 serial 1.26 1302.42 98.4% 20.98 || 1323.66 0.30
parallel (ours) 1.42 475 16.0% 23.49 29.66 13.26
Cheng2020 serial 1.82 132532 95.0% 68.21 || 1395.35 0.28
parallel (ours) 1.72 4.37 5.8% 69.14 75.23 5.23
Tecnick, image size: 1200 x 1200, feature size: 75 x 75 x M
Ballé2018 2.22 - - 81.06 83.28 17.29
w/o context 4.01 1.30 1.5% 81.00 86.31 16.68
Minnen2018 serial 3.78 4891.43 98.3% 82.77 || 4977.98 0.29
parallel (ours) 4.27 8.36 8.8% 82.83 95.46 15.08
Cheng2020 serial 3.40 504493 95.3% 247.83 || 5296.16 0.27
parallel (ours) 3.09 10.98 4.2% 245.30 259.37 5.55
Table 1. Running time of each decoding process (unit: microsecond) on GPU. Meaning of table headers is the same as which is in Table 2

and Table 3 in the main body. The column speed shows million-pixels-per-second (Mpps) of each model, which represents how fast a

specific architecture can decode images from bitstream.

. hyper arameter latent total speed

architecture (N=192) syntl?epsis falculation synthesis (s) (II()pps)
Kodak, image size: 768 x 512, feature size: 48 x 32 x M

Ballé2018 0.059 - - 1.460 1.519 | 258.89

w/o context 0.118 0.009 0.5% 1.720 1.848 | 212.79

Minnen2018 serial 0.115 20.402 99.4% 1.875 || 20.518 19.23

parallel (ours) 0.113 0.083 3.9% 1.937 2.132 | 184.42

Cheng2020 serial 0.108 22.107 91.7% 1.901 || 24.116 16.30

parallel (ours) 0.095 0.086 4.6% 1.678 1.859 | 211.49

Table 2. Running time of each decoding process (unit: second) on CPU.

Figure 1. Multiplexer implementation with slicing and concatenat-
ing operators.

a series of permuting and reshaping) and then slice every
feature maps, anchor and non-anchor, into four chunks and
concatenate four of eight chunks to get what we require.
Since most popular frameworks support above mentioned
operators, this provides a more general solution to imple-
ment the proposed checkerboard model.

3.2. Demultiplexer: Split Latents for Encoding

During encoding, latents must get divided into two
chunks: anchors and non-anchors, and then be encoded by
AE separately. Otherwise, future decoding will fail because
AD must read all anchors from the bitstream before decod-
ing non-anchors. So we also require a cheap operation to
separate latents into anchors and non-anchors. We use an in-
verse operation of slice-and-concatenate multiplexer intro-
duced in Section 3.1.2 and Figure 1. See Figure 2, this new
operation called demultiplexer performs a space-to-depth
and then slices the latents or entropy parameters along chan-
nels to get anchors and non-anchors (or their corresponding
entropy parameters).

3.3. Merging Two Chunks During Decoding

Figure 2 also shows how to decode and recover the two
chunks of latents from the bitstream (right part in the dia-
gram). With it we further discuss how we implement the
two-pass decoding. After viewing, filler chunks will get
inserted into the decoded feature maps via slicing and con-

iAE AD
> »@—)@—)

[}
I
1
I bitstreams O: zeros depth-to-spate
1
1

IAE AD

=> [>HH—> B>

Figure 2. Demultiplexer (DEMUX) implementation with slicing and concatenating operators. Anchors and non-anchors are decoded from
bitstream in turn and finally get gathered.

catenating (in our implementation, we simply use zero ten-
sors as fillers). Then we reshape the filled feature maps to
get Yanchor OF Ynon—anchor With sizes of H x W x M, as is
described in Figure 5 in the main body. After finally decod-
ing all anchors and non-anchors, we merge the two chunks
with above mentioned multiplexer (or an addition operation
if using zero fillers).

(a) ground truth (b) serial (BPP =0.219, PSNR = 31.96) (c) parallel (BPP =0.227, PSNR = 31.80)

(d) ground truth (e) serial (BPP =0.449, PSNR = 33.54) (f) parallel (BPP = 0.454, PSNR = 33.42)

(g) ground truth (h) serial (BPP = 0.091, PSNR = 28.29) (i) parallel (BPP =0.095, PSNR = 28.01)

Figure 3. Reconstructed images kodim15, kodim02 and kodim09 from Kodak. The serial ones are evaluated on our reproduced Cheng2020
models optimized for MSE and the parallel ones are from Cheng2020 with proposed checkerboard context model optimized for MSE.

PSNR

38

37

36

35

34

33

32

31

30

Cheng2020 with checkerboard, 6M steps [opt.mse] (ours)
Minnen2020, cc10 [opt.mse] [26]
Minnen2018 [opt.mse] [25]
Minnen2018 with checkerboard [opt.mse] (ours)
Minnen2018 w/o context [opt.mse] [25]
BPG (4:4:4) [8]
Ballé2018 [opt.mse] [6]
JPEG [15]
/
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Bits Per Pixel

Figure 4. PSNR evaluation on Tecnick. Dash lines represent models adopting the serial context model.

25.0

225

20.0

17.5

15.0

MSSSIM in dB

12.5

10.0

7.5

5.0

0.0

}

Cheng2020 [opt.ms-ssim] [10]

Cheng2020 with checkerboard, 6M steps [opt.ms-ssim] (ours)
Minnen2018 with checkerboard [opt.ms-ssim] (ours)
Ballé2018 [opt.ms-ssim] [6]

Cheng2020 with checkerboard, 6M steps [opt.mse] (ours)
Cheng2020 [opt.mse] [10]

Minnen2018 [opt.mse] [25]

Minnen2018 with checkerboard [opt.mse] (ours)
Ballé2018 [opt.mse] [6]

BPG (4:4:4) [8]

JPEG [15]

0.4 0.6 0.8 1.0
Bits Per Pixel

Figure 5. MS-SSIM evaluation on Kodak. Results are converted to decibels: —10log; (1 — MSSSIM(z, #)). Dash lines represent models

adopting the serial context model.

