
Supplementary Material

1. Detailed Running Speed

We give detailed report on decoding time on our PyTorch
implementation. Extending Table 2 and Table 3 in the main
body, latency for each process averaged on Kodak and Tec-
nick is shown in Table 1. It is apparent that for all serial
models, calculating context features and entropy parame-
ters is the bottleneck, which takes more than 95% decod-
ing time. By adopting the proposed parallel context model,
Minnen2018’s average decoding speed increases 44.6 times
on Kodak (small images) and 52.1 times on Tecnick (large
images). Meanwhile, Cheng2020 also speeds up 18.5 and
20.4 times tested on the two datasets due to a parallel con-
text model.

We also test above mentioned models on CPUs as a ref-
erence (see Table 2). Though we mainly aim to improve the
decoding efficiency on parallel devices, our parallel context
model can still perform well on CPUs because of a suffi-
cient use of matrix librarys e.g. Intel MKL, which is very
encouraging. We measure the speeds by running our Py-
Torch implementation on Intel Xeon E5-2620.

2. More RD Curves

For completeness, we evaluate all models on Tecnick.
Figure 4 shows the results. Compared with a channel con-
ditioned solution Minnen2020, Cheng2020 with proposed
checkerboard context model performs slightly worse in the
low bit rate but better in the high bit rate. This perhaps
because GMM cannot estimate the density precisely when
using less coding channels (N = 128 in our case), as de-
scribed in the original Cheng2020 paper. On the other hand,
Minnen2018 with checkerboard context model even slightly
outperforms original Minnen2018 baseline in higher bit
rates. It further proves that a checkerboard-shaped convo-
lution can extract more causal relationship and helps save
more rate, especially in larger images which have more
smooth area with more spatial redundancy.

We also optimize our models for MS-SSIM with D =
1 − MSSSIM(x, x̂) and test all models with MS-SSIM.
To train models for MS-SSIM optimization, we set λ
to {1, 3, 16} for low bit rate models (N = 128) and
{40, 120, 360} for high rate models (N = 192). Figure 5
shows the results tested on Kodak.

3. Cheap Operations for Parallel En/De-coding
3.1. Multiplexer: Generating ŷhalf from ŷ

As described in the main body, we generate ŷhalf and
bhalf to perform a one-pass encoding. To implement it we
further define a multiplexer operation MUX:

MUX(α,β)i =

{
αi, ŷi ∈ ŷanchor
βi, otherwise

where inputs α and β are feature maps with the same sizes
H ×W ×M as ŷ. So we can simply calculate ŷhalf and
bhalf with below formula:

ŷhalf = MUX(ŷ,0)

bhalf = MUX(bmap,0)

where bmap ∈ RH×W×M is the feature map with every
H ×W locations filled with the M -element bias vector b.

Since we do not want the newly introduced multiplexer
operation slow down the encoding process, it must be elab-
orately arranged as a series of light operations like slicing or
viewing operators in PyTorch. We provide two of practical
ways to implement the multiplexer.

3.1.1 Using slice-assign operations

For frameworks such as PyTorch and TensorFlow support-
ing slice-and-assign operators, we simply use such opera-
tors with a slicing step of 2 to mix the anchors and non-
anchors input into the multiplexer. It could be a piece of
code like:

mix = MUX(a lpha , b e t a)
mix = c l o n e (a l p h a)
mix [. . . , 1 : : 2 , 0 : : 2] = b e t a [. . . , 1 : : 2 , 0 : : 2]
mix [. . . , 0 : : 2 , 1 : : 2] = b e t a [. . . , 0 : : 2 , 1 : : 2]

3.1.2 Using slicing and concatenating

For frameworks which do not support slice-assign opera-
tions, also we could mix anchors and non-anchors with
shape-transforming operations like reshaping, permuting,
slicing or concatenating. See Figure 1. Firstly, we flat-
ten each 2 × 2 patches using a space-to-depth operator (or

1

architecture (N=192) hyper parameter % latent total speed
synthesis calculation synthesis (ms) (Mpps)

Kodak, image size: 768× 512, feature size: 48× 32×M
Ballé2018 1.30 - - 25.04 26.34 14.93

Minnen2018
w/o context 1.32 2.23 8.4% 22.85 26.41 14.89

serial 1.26 1302.42 98.4% 20.98 1323.66 0.30
parallel (ours) 1.42 4.75 16.0% 23.49 29.66 13.26

Cheng2020 serial 1.82 1325.32 95.0% 68.21 1395.35 0.28
parallel (ours) 1.72 4.37 5.8% 69.14 75.23 5.23

Tecnick, image size: 1200× 1200, feature size: 75× 75×M
Ballé2018 2.22 - - 81.06 83.28 17.29

Minnen2018
w/o context 4.01 1.30 1.5% 81.00 86.31 16.68

serial 3.78 4891.43 98.3% 82.77 4977.98 0.29
parallel (ours) 4.27 8.36 8.8% 82.83 95.46 15.08

Cheng2020 serial 3.40 5044.93 95.3% 247.83 5296.16 0.27
parallel (ours) 3.09 10.98 4.2% 245.30 259.37 5.55

Table 1. Running time of each decoding process (unit: microsecond) on GPU. Meaning of table headers is the same as which is in Table 2
and Table 3 in the main body. The column speed shows million-pixels-per-second (Mpps) of each model, which represents how fast a
specific architecture can decode images from bitstream.

architecture (N=192) hyper parameter % latent total speed
synthesis calculation synthesis (s) (Kpps)

Kodak, image size: 768× 512, feature size: 48× 32×M
Ballé2018 0.059 - - 1.460 1.519 258.89

Minnen2018
w/o context 0.118 0.009 0.5% 1.720 1.848 212.79

serial 0.115 20.402 99.4% 1.875 20.518 19.23
parallel (ours) 0.113 0.083 3.9% 1.937 2.132 184.42

Cheng2020 serial 0.108 22.107 91.7% 1.901 24.116 16.30
parallel (ours) 0.095 0.086 4.6% 1.678 1.859 211.49
Table 2. Running time of each decoding process (unit: second) on CPU.

Figure 1. Multiplexer implementation with slicing and concatenat-
ing operators.

a series of permuting and reshaping) and then slice every
feature maps, anchor and non-anchor, into four chunks and
concatenate four of eight chunks to get what we require.
Since most popular frameworks support above mentioned
operators, this provides a more general solution to imple-
ment the proposed checkerboard model.

3.2. Demultiplexer: Split Latents for Encoding

During encoding, latents must get divided into two
chunks: anchors and non-anchors, and then be encoded by
AE separately. Otherwise, future decoding will fail because
AD must read all anchors from the bitstream before decod-
ing non-anchors. So we also require a cheap operation to
separate latents into anchors and non-anchors. We use an in-
verse operation of slice-and-concatenate multiplexer intro-
duced in Section 3.1.2 and Figure 1. See Figure 2, this new
operation called demultiplexer performs a space-to-depth
and then slices the latents or entropy parameters along chan-
nels to get anchors and non-anchors (or their corresponding
entropy parameters).

3.3. Merging Two Chunks During Decoding

Figure 2 also shows how to decode and recover the two
chunks of latents from the bitstream (right part in the dia-
gram). With it we further discuss how we implement the
two-pass decoding. After viewing, filler chunks will get
inserted into the decoded feature maps via slicing and con-

2

Figure 2. Demultiplexer (DEMUX) implementation with slicing and concatenating operators. Anchors and non-anchors are decoded from
bitstream in turn and finally get gathered.

catenating (in our implementation, we simply use zero ten-
sors as fillers). Then we reshape the filled feature maps to
get ŷanchor or ŷnon−anchor with sizes of H ×W ×M , as is
described in Figure 5 in the main body. After finally decod-
ing all anchors and non-anchors, we merge the two chunks
with above mentioned multiplexer (or an addition operation
if using zero fillers).

3

(a) ground truth (b) serial (BPP = 0.219, PSNR = 31.96) (c) parallel (BPP = 0.227, PSNR = 31.80)

(d) ground truth (e) serial (BPP = 0.449, PSNR = 33.54) (f) parallel (BPP = 0.454, PSNR = 33.42)

(g) ground truth (h) serial (BPP = 0.091, PSNR = 28.29) (i) parallel (BPP = 0.095, PSNR = 28.01)

Figure 3. Reconstructed images kodim15, kodim02 and kodim09 from Kodak. The serial ones are evaluated on our reproduced Cheng2020
models optimized for MSE and the parallel ones are from Cheng2020 with proposed checkerboard context model optimized for MSE.

4

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Bits Per Pixel

29

30

31

32

33

34

35

36

37

38

PS
N

R

Cheng2020 with checkerboard, 6M steps [opt.mse] (ours)
Minnen2020, cc10 [opt.mse] [26]
Minnen2018 [opt.mse] [25]
Minnen2018 with checkerboard [opt.mse] (ours)
Minnen2018 w/o context [opt.mse] [25]
BPG (4:4:4) [8]
Ballé2018 [opt.mse] [6]
JPEG [15]

Figure 4. PSNR evaluation on Tecnick. Dash lines represent models adopting the serial context model.

5

0.0 0.2 0.4 0.6 0.8 1.0
Bits Per Pixel

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

M
SS

SI
M

 in
 d

B

Cheng2020 [opt.ms-ssim] [10]
Cheng2020 with checkerboard, 6M steps [opt.ms-ssim] (ours)
Minnen2018 with checkerboard [opt.ms-ssim] (ours)
Ballé2018 [opt.ms-ssim] [6]
Cheng2020 with checkerboard, 6M steps [opt.mse] (ours)
Cheng2020 [opt.mse] [10]
Minnen2018 [opt.mse] [25]
Minnen2018 with checkerboard [opt.mse] (ours)
Ballé2018 [opt.mse] [6]
BPG (4:4:4) [8]
JPEG [15]

Figure 5. MS-SSIM evaluation on Kodak. Results are converted to decibels: −10 log10(1−MSSSIM(x, x̂)). Dash lines represent models
adopting the serial context model.

6

