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A. Gradients of the Graph Matching Layer

As described in Section 4.3 of our main paper, the gra-
dients of the graph matching layer we need for backward
can be derived from the KKT conditions with the help of
the implicit function theorem. Here, we show the details of
deriving the gradients.

For a quadratic programming (QP), the standard formu-
lation is as

minimize %xTQ(Q)x +q) Tz
subject to  G(0)z < h(h) (A)

A(0)z = b(0).

So the Lagrangian is given by

1
L(z,v,\) = §xTQx + A (Gz—h)+q z4+vT (Az—D),
B)
where, v and ) are the dual variables.
The (z*, \*, v*) are the optimal solution if and only if they
satisfy the KKT conditions:
ViL(z*, X v*) =0
Qr* +q+ ATV  +GTN\ =0
A" —b=0
diag(A*)(Gz* — h) =0
Gz*—h<0
A >0.

©)

We define the function
g(z, \,v,0) = |diag(

*

and the optimal solution z*, \* v
glx*, A*,v*,0) = 0.

satisfy the euqation

According to the implicit function theorem, as provenin [1],
the gradients where the primal variable = and the dual vari-
ables v and A\ are the optimal solution, can be formulated
as

JQm*:_ mg($*7/\*7V*ae)_lJeg(x*vA*7V*79)’ (E)

where, J,g(z*, \*,v*,0) and Jypg(x*, \*, v*, 0) are the Ja-
cobian matrices. Each element of them is the partial deriva-
tive of function g with respect to variable x and 6, respec-
tively.

B. Pseudo-code of Our Algorithm

To make our algorithm clear and easy to understand,
we show the pseudo code of our GMTracker algorithm
in Alg. A. The input of the algorithm is the detection
set D' = {Di,D%,--- D! } and tracklet set 7' =
{11, 7%, , T} }, defined in Section 4.1 of our main pa-
per. And the output is the new tracklet set 7**! to be asso-
ciated in the next frame. The motion gate « is 9.4877. The
feature similarity threshold o is 0.6 in the videos taken by
the moving camera, and 0.7 in the videos taken by the static
camera. The max age ¢ is 100 frames.

C. Additional Experiments and Analyses
C.1. Comparison with the Oracle Tracker

To explore the upper bound of the association method,
we compare our method with the ground truth association,
called the Oracle tracker. The results on MOT17 val set are
shown in Table A. There is a gap of 5.7 IDF1 and about
1000 ID Switches between our online GMTracker and the
Oracle tracker.

Another observation is that on some metrics, which are
extremely relevant to detection results, like MOTA, FP and
FN, the gaps between the baseline, our method and the Or-
acle tracker are relatively small. That is why we mainly



| IDFI MOTA | MT ML FP FN  IDSw.

Baseline | 68.1 62.1 556 371 1923 124480 1135
Ours 71.5 623 | 555 375 1741 124298 1017
Oracle | 77.2 62.6 | 545 368 1730 124287 14

Table A: Comparison between the baseline, our GMTracker
and the Oracle tracker on MOT17 val set.

IDF1 FP

72 12500
10000 A
714 7500 4 —®— W/ Inter.
—&— wj/o Inter.

5000 4

704 —m— w/ Inter.

—8— w/o Inter. 25004
0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8
o o
FN ID Switch
125000 15 = = s
1400 4 N

120000 A
—#— w/ Inter. 1200

—&— w/o Inter.

—#— w/ Inter.

—&— w/o Inter.
1000 A

.—’1—/-/. 8001 — ,

0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8
o o

115000

Figure A: Results on IDF1, FP, FN and ID Switch metrics
under different threshold o of the feature similarity to create
a new tracklet.

concern with the metrics reflecting the association results,
such as IDF1 and ID Switch.

C.2. Discussions

Tracklet born strategies. In our GMTracker, the tracklet
born strategies mostly follow DeepSORT, but we also make
some improvements to make these strategies more suitable
for our approach, as described in Section 4.4 in our main
paper. Among the three criteria to create a new tracklet, we
find that the threshold o is the most sensitive hyperparame-
ter in our method. We conduct experiments with different o,
and its influence on IDF1, FP, FN and ID Switch is shown
in Fig. A.

C.3. Detailed Performance

As shown in Table B, the results on more metrics, such as
HOTA, AssA, DetA, LocA, MT, ML are provided for better
comparison.

Algorithm A: GMTracker Algorithm

Input: D!, T*

Output: 7¢+!

for D! € D' do

a’l « MLP,(ReID(I}))
hgo) — a%t

for T/ € T" do

for Dé) € T’Jt do
L ag)ﬁk . MLPa(ReID(Ilzi)))

ajT’f’ — mean(ag)’k)

B hgo) — agp’t
for ! <l,,q. do
for D! € D' do
m{” — A({w )b | j € Gr})
| )
or T; € T"do
m! « A({w)n" | i e gp})

L hY — Fm m)

)

for D!, D!, € D' do
h; « h"*Y h, « n*Y
| hi,i’ < lQ([h“ hz/])
for T}, T} € T do
I+1 1+1

hj < hS ), hj/ < h;’ )
| hj < l([hy, hy])
for D}, T} € D', T* do
Mg’v — l:lr;»fi/ hj7j/
| Bij < h;h;
atch + graph matching(M,, B)
for D}, T} € D', T" do

if 1oU(D}, T}) < 0 or d(D}, T}) >

K or cos(D!, T!) < o then
| delete(match(s,j))

t t t
for Di’ T] € Dunmatch’ 71—.1tnmatch do

if ToU(D}, T}) > 0.3 then

=]

for D!, Tt € D', T do

PRE
if match(i,j) or matchagq(4,j) then
t+1 ¢ ¢
;7 « Tf +{Dj}

motion(Tf“).update()
if D! € D then

1 unmatcht
L Tnew A {Dz}

ifo.last,update > § then
L delete(T})

return 7t

L match,gq < Hungarian(IoU(D?, T



Methods ‘Reﬁned Det‘IDFlT HOTAT MOTA1 MT+ ML| FP| FN] IDS| AssAt DetAT LocA?t

MOT17
GNMOT (0*) [7] - 47.0 - 50.2 19.3 327 29316 246200 5273 - - -
FAMNet (O) [4] - 48.7 - 52.0 19.1 334 14138 253616 3072 - - -
JBNOT (0*) [5] - 50.8 413 52.6 19.7 35.8 31572 232659 3050 39.8 433 802
Tracktor++ (O) [2] Tracktor 523 421 535 19.5 36.6 12201 248047 2072 41.7 429 809
Tracktor++v2 (O) [2] Tracktor 55.1 44.8 563  21.1 353 8866 235449 1987 451 449  81.8
GNNMatch (O) [9] Tracktor 56.1 454 57.0 233 34.6 12283 228242 1957 452 459 815

GSM _Tracktor (O) [8] Tracktor 57.8 45.7 564 222 345 14379 230174 1485 47.0 449 809
CTTrackPub (O) [12] CenterTrack | 59.6 48.2 61.5 264 319 14076 200672 2583 47.8 49.0 81.7
GMTracker(Ours) (O) Tracktor 63.8 49.1 562  21.0 355 8719 236541 1778 539 449 818
GMT_CT(Ours) (O) CenterTrack | 66.9 52.0 61.5 263 32.1 14059 200655 2415 551 494 818

TPM [10] - 52.6 41.5 542 22.8 37.5 13739 242730 1824 40.9 425 80.0
eTC17 [11] - 58.1 449 519 23.1 355 36164 232783 2288 47.0 433 794
MPNTrack [3] Tracktor 61.7 49.0 58.8 28.8 335 17413 213594 1185 51.1 473 815
Lif_TsimlInt [6] Tracktor 65.2 50.7 58.2  28.6 33.6 16850 217944 1022 549 47.1 81.5
LifT [6] Tracktor 65.6 51.3 60.5 27.0 33.6 14966 206619 1189 547 483 81.3
GMT _simInt (Ours) Tracktor 65.9 51.1 59.0 29.0 33.6 20395 209553 1105 55.1 47.6 81.2
GMT_VIVE (Ours) Tracktor 65.9 51.2 60.2 265 332 13142 209812 1675 551 478 813
GMTCT_simInt (Ours) | CenterTrack | 68.7 54.0 65.0 294 31.6 18213 177058 2200 56.4 52.0 81.5
MOT16
Tracktor++v2 (O) [2] Tracktor 54.9 44.6 56.2  20.7 35.8 2394 76844 617 446 448 82.0
GNNMatch (O) [9] Tracktor 55.9 44.6 569 223 353 3235 74784 564 4377 458 81.7
GSM _Tracktor (O)[8] Tracktor 58.2 459 57.0 22.0 345 4332 73573 475 467 454 81.1

GMTracker(Ours) (O) | Tracktor 63.9 48.9 559 203 36.6 2371 77545 531 537 446 821
GMT_CT (Ours) (O) | CenterTrack | 68.6 53.1 62.6 26.7 31.0 5104 62377 787 563 504 818

TPM [10] - 479 36.7 51.3 18.7 40.8 2701 85504 569 346 393 79.1
eTC[11] - 56.1 42.0 49.2 17.3 403 8400 83702 606 445 399 788
MPNTrack [3] Tracktor 61.7 48.9 58.6 273 340 4949 70252 354 51.1 47.1 817
Lif_TsimlInt [6] Tracktor 64.1 49.6 575 254 347 4249 72868 335 533 465 819
LifT [6] Tracktor 64.7 50.8 613 27.0 340 4844 65401 389 531 489 814
GMT _simInt (Ours) Tracktor 66.2 51.2 59.1 275 344 6021 68226 341 551 477 815
GMT_VIVE (Ours) Tracktor 66.6 51.6 61.1  26.7 333 3891 66550 503 553 485 815

GMTCT _simInt (Ours) | CenterTrack | 70.6 55.2 66.2 29.6 304 6355 54560 701 57.8 531 815

Table B: Detailed comparison with state-of-the-art methods on MOT16 and MOT17 fest set. (O) denotes online methods.
(O*) denotes near-online methods.
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