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1. Network Architectures
As a supplement to the content of Section 4 and Sec-

tion 5, Table 1 depicts the whole architecture and parameter
settings of FDSR, which consists of initial operations, high-
frequency guidance branch (HFGB) and multi-scale recon-
struction branch (MSRB).

2. Experimental Settings
To evaluate the global and local depth map SR accuracy,

we have introduced two quantitative indicators: depth value
errros and edge errors. In this part, we will illustrate how
we calculate the depth value errors and edge errors.

Dataset split and Training Strategy. As for RGB-D-D
dataset, we randomly split 1586 portraits, 380 plants, 249
models for training and 297 portraits, 68 plants, 40 models
for testing.What’s more, the 430 pairs of lights data are all
used to test when we evaluate methods in more challenge
scenes. The model for every scaling factor is optimized us-
ing the Adam optimizer[3] with β1 = 0.9 and β2 = 0.999,
and a batch size of 1.

Depth Value Errors. As for each value in the depth map,
we calculate the percentage of absolute value changes over
10% between ground truth and output. To focus on the fore-
ground subjects, in RGB-D-D dataset, we use binary masks
to calculate the value changes in 3 meters. And in NYU
v2 [5], we use binary masks to calculate the value changes
in 10 meters.

Edge Errors. To calculate the edge errors, we fisrt use So-
bel operator to get a fine edge map of RGB image and nor-
malize it to [0, 255]. Then, we make edge expansion by
using a 3 × 3 median filter on the edge map. After that,
we make binary edge masks from the edge map through the

*Corresponding author: yzhao@bjtu.edu.cn

threshold [10, 255]. In the area of the binary edge masks,
we calculate the percentage of absolute value changes over
1.2% between ground truth and output. Using RGB edges
to calculate the edge errors can reflect the edge character-
istics of the depth SR effect to a certain extent. There are
two reasons: (1) Most depth SR methods are RGB guided
and the RGB edges may be introduced into HR depth maps,
which makes it not accurate. Therefore, it is meaningful
to calculate the edge errors brought by RGB guidance. (2)
Most depth map edges are included in RGB edges. With
the influence of illumination in the practical scenes, most
discontinuity areas in depth maps also exist edges in RGB
images. Thus, calculating the RGB edge errors can to some
extent reflect the edge errors of depth maps.

3. Additional Experimental Results
We conduct more experiments on our proposed RGB-D-

D dataset to demonstrate the effectiveness of our dataset and
method. We retrain ×8 depth map SR models of DKN [2],
FDKN [2], DJFR [4] and our FDSR on the training set of
RGB-D-D in downsample manner and test them on the test-
ing set. We first downsample the ground truth to obtain
LR depth maps by utilizing traditional bicubic interpolation
operation. When training on RGB-D-D, we use the same
training strategy as the author mentioned in their work. The
quantitative results of ×8 depth map SR are shown in Ta-
ble 2. It can be found that, the performance of all the meth-
ods have smaller RMSE than they trained on NYU v2 and
our method FDSR achieves the best performance. Observ-
ing Figure 1, after retraining, all the methods can produce
HR depth maps with clearer and sharper boundaries than
before. Besides, noticing the background color in Figure 1,
DKN and FDKN may have bigger global errors in some
caces when they were trained on NYU v2 [5]. Benifited by
the RGB-D-D, it was improved after retraining. Moreover,
our model can to some extent correct the depth value errors



The Architecture of FDSR Network
Layers Operation Out

Initial1 RGB2GRAY {N × 1× (H × 4)× (W × 4)}
Initial2 Resample {N × 16×H ×W}
HFGB1 RGB Resampled {N × 16×H ×W}
HFGB2 Conv(3× 3) - LReLU {N × 32×H ×W}
HFGB3 HFL(3× 3) - LReLU {Y H

1 = N × 24×H ×W ; Y L
1 = N × 8×H ×W}

HFGB4 HFL(3× 3) - LReLU {Y H
2 = N × 24×H ×W ; Y L

2 = N × 8×H ×W}
HFGB5 HFL(3× 3) - LReLU {Y H

3 = N × 24×H ×W ; Y L
3 = N × 8×H ×W}

MSRB1 Depth {N × 16×H ×W}
MSRB2 Conv(3× 3) - LReLU {N × 32×H ×W}
MSRB3 MSDB(3× 3) - LReLU {N × 32×H ×W}
MSRB4 Concatenate(MSRB3, HFGB3: Y H

1 ) {N × 56×H ×W}
MSRB5 MSDB(3× 3) - LReLU {N × 56×H ×W}
MSRB6 Concatenate(MSRB5, HFGB4: Y H

2 ) {N × 80×H ×W}
MSRB7 MSDB(3× 3) - LReLU {N × 80×H ×W}
MSRB8 Concatenate(MSRB7, HFGB5: Y H

3 ) {N × 104×H ×W}
MSRB9 MSDB(3× 3) - LReLU {N × 104×H ×W}

MSRB10 MSDB(3× 3) - LReLU {N × 128× (H × 2)× (W × 2)}
MSRB11 MSDB(3× 3) - LReLU {N × 32× (H × 4)× (W × 4)}
MSRB12 MSDB(3× 3) - LReLU {N × 1× (H × 4)× (W × 4)}
MSRB13 Add(MSRB12, Initial1) {N × 1× (H × 4)× (W × 4)}

Table 1. The archetecture of the FDSR network. Denote that, the LR depth map is of size 1 × H ×W , the HR RGB image is of size
3 × (H × 4) × (W × 4). HFL denotes high-frequency layer, Y H

i , i = 1, 2, 3 and Y L
i , i = 1, 2, 3represents high-frequency components

and low-frequency components respectively, MSDB is multi-scale dilated block and LReLU represents leaky ReLU with the slop of 0.2.

DJFR / DJFR+ FDKN / FDKN+ DKN / DKN+ FDSR / FDSR+

RMSE 5.57 / 2.16 1.91 / 1.83 1.96 / 1.93 1.82 / 1.71
Value Errors 2.15 / 0.32 0.28 / 0.22 0.33 / 0.23 0.26 / 0.21
Edge Errors 15.66 / 5.22 3.41 / 3.60 3.55 / 4.20 3.09 / 2.79

Table 2. RMSE, value errors and edge errors of ×8 depth map SR results. The DJFR [4], FDKN [2], DKN [2] and FDSR are trained on
NYU v2 [5]. The DFFR+, FDKN+, DKN+ and FDSR+ are trained on RGB-D-D.

DJFR FDKN DKN FDSR
RMSE 3.61 2.17 2.12 1.95

Table 3. RMSE of ×8 depth map SR results.

which makes our results more accuracy.
We also trained more baselines in the real-world manner

on our RGB-D-D dataset.We have trained DJFR, SVLRM,
and our FDSR on the LR images and the corresponding
RMSE are 6.12, 6.23, 5.49, respectively which demon-
strates the performance of our our approach.

In addition, We conducted more experiments on another
public dataset: Middlebury dataset [6, 1]. We use 30 pairs
data from the 2001-2006 datasets provided by Lu [7]. As
same as what DKN did, the DJFR [4], FDKN [2], DKN [2]
and FDSR was trained on NYU v2 [5] and tested on Middle-
buty dataset [6, 1]. The results of ×8 depth map SR shown
in Table 3 futher demonstrate the effectiveness of our base-
line.
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Figure 1. Visual comparison of ×8 depth map SR results. (a) RGB image and ground truth. (b) DJFR [4] trained on NYU v2 [5] and
DFFR+ trained on RGB-D-D. (c) FDKN [2] trained on NYU v2 and FDKN+ trained on RGB-D-D. (d) DKN [2] trained on NYU v2 and
DKN+ trained on RGB-D-D. (e) FDSR trained on NYU v2 and FDSR+ trained on RGB-D-D. The even and odd rows represent results of
models trained on NYU v2 and results of models trained on RGB-D-D respectively.


