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In this supplementary material, we provide the follow-
ing sections for a better understanding of the main paper.
Firstly, the details of the heuristic clustering algorithms
mentioned in the main paper are provided (Sec. 1). Then,
we provide analyses of the differentiability of the dynamic
shifting to give some insights into our design (Sec. 2). We
provide further analysis of the dynamic shifting module and
time consumption (Sec. 3). Moreover, we report the imple-
mentation details of DS-Net for the reproducibility (Sec. 4).
Last but not least, the per-class results are reported (Sec. 5),
and more visualization examples are displayed (Sec. 6).

1. Details of Heuristic Clustering Algorithms
Breadth First Search (BFS). BFS is simple but effective
for indoor point clouds. For the points to be clustered, BFS
first constructs a graph where edges connect point pairs that
are closer than a given radius. Then each connected sub-
graph is considered a cluster. BFS has shown that it is ca-
pable of performing high-quality clustering for indoor point
clouds [4] which are dense, even and complete. However,
it does not apply to LiDAR point clouds. As discussed in
the main paper, large density difference within and between
clusters means that the fixed radius can not properly adapt to
different clusters. Therefore, it is not a good idea to use BFS
as the clustering algorithm for autonomous driving scenes.
DBSCAN [3] and HDBSCAN [1]. Both DBSCAN and
HDBSCAN are density-based clustering algorithms which
make them perform badly on LiDAR point clouds. Similar
to BFS, DBSCAN also constructs a graph based on the mu-
tual distances of the points. Although the new concept of
core point is introduced to filter out noise points, the prob-
lem brought by the fixed radius also occurs in this algo-
rithm. Moreover, the mechanism of noise points recognition
also brings problems. For any points to be clustered, if there
exists less than a certain number of points within a certain
radius, the point is labeled as a noise point. However, the

number and densities of points inside instances vary greatly,
which makes it hard to determine the line between instances
with little points and noise points.

HDBSCAN has a more complex rule of constructing
graphs and is claimed to be more robust to density chang-
ing than DBSCAN. The mutual reachable distance replaced
euclidean distance as the indicators of graph construction,
which makes it more robust to density changes. Moreover,
with the help of the cluster hierarchy, DBSCAN can auto-
matically adapt to data with different distributions. How-
ever, by introducing the concept of mutual reachable dis-
tance, HDBSCAN intuitively assumes that the points with
lower density are more likely to be seas (noise points) that
separate lands (valid clusters), which is not the case in Li-
DAR point clouds where low-density point clouds can also
be valid instances that are far away from the LiDAR sen-
sor. Thus DBSCAN and HDBSCAN can not provide high-
quality clustering results.
Mean Shift [2]. Mean Shift performs clustering in a very
different way than the above three algorithms. Firstly, seed-
ing points are sampled from the points to be clustered.
Then, seeding points are iteratively shifted towards cluster
centers in order to obtain centers of all clusters. The po-
sitions where seeding points are shifted to is calculated by
applying the kernel function on corresponding points. In
our implementation, we use the flat kernel which takes the
mean of all points within a query ball as the result. The
radius of the ball is denoted bandwidth. After several iter-
ations, all the shifted points have converged and the clus-
ter centers are extracted from the converged points. All the
points to be clustered are assigned to the nearest cluster cen-
ters, which produces the final instance IDs. The advantage
of Mean Shift is that the kernel function is not sensitive to
density changes and robust to noise points, which makes it
more suitable than density-based clustering algorithms.

However, Mean Shift is not perfect. The choice of pa-



rameters of the kernel function, which is the bandwidth in
this case, is not trivial. The bandwidth controls the range
that the kernel function is applied on. Small bandwidth
would mislead the regressed centers of a single instance
shifting to several different cluster centers and cause over-
segmentation. On the contrary, large bandwidth would mis-
lead regressed centers of neighboring instances shifting to
one cluster center and result in under-segmentation. The
performance of the classes with relatively small size drops
with the bandwidth increasing and vice versa. Therefore,
the fixed bandwidth can not handle large and small in-
stances simultaneously. Besides, assigning each point to the
cluster centers is not reasonable for that nearby instances
may have different sizes which would lead to a different de-
gree of dispersion of regressed centers. For example, edge
points of a large instance may be farther to its center than
that of nearby instances. Although Mean Shift is not as bad
as density-based clustering algorithms, there remains a lot
of room for improvement.

2. Gradient Calculation of Dynamic Shifting
In this chapter, we are going to show the gradients of

one dynamic shifting iteration and that directly regressing
bandwidth with flat kernel is not differentiable. The for-
ward pass of dynamic shifting can be broken down to the
following steps:

Kj = (XXT ≤ δj) (1)
Dj = Kj1 (2)

Sj = D−1
j KjX (3)

wj = f(F, pj) (4)

Wj = wj1
1×3 (5)

Yj =Wj � Sj (6)

Y =

l∑
j=1

Yj , (7)

whereX represents the seeding points, f is the combination
of Softmax and MLP, pj is the parameter of f , F is the
backbone features, Y is the shifted seeding points, and �
denotes element-wise product. It is worth noting that Sj ,
which is defined by equation 1, 2 and 3, is constant and
therefore does not have gradients. Assuming c is the loss,
backpropagation gradients are calculated as follows.
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However, if the bandwidth δ is learnable, then equation
1 will turn to:

K = (XXT ≤ δ), (13)

which unfortunately is not differentiable. Therefore, in our
ablation study, in order to further demonstrate that direct
regression is not a good strategy, we adopt the Gaussian
kernel which is formally defined as:

K = exp(−XX
T

2δ2
), (14)

where δ is the learnable bandwidth. With the Gaussian ker-
nel, the direct regression version of dynamic shifting is now
differentiable.

3. Further Analyses
Number of Iterations Settings. In the dynamic shift-
ing module, other than bandwidth candidates, the hyper-
parameter to tune is the number of iterations, which is es-
sential for the final clustering quality because too few itera-
tions would cause insufficient convergence while too many
iterations would add unnecessary time and space complex-
ity. As shown in Table 1, we experiment on several different
iteration number settings. The best result is achieved when
the number of iterations is set to 4 which is the counterpoint
of sufficient convergence and efficiency.

Table 1: Experiments on the number of iteration. All results
in [%].

Number of
Iteration

PQ PQ† RQ SQ mIoU

1 57.0 62.6 67.4 77.3 63.5
2 57.6 63.1 67.8 77.5 63.6
3 57.7 63.3 68.0 77.6 63.4
4 57.7 63.4 68.0 77.6 63.5
5 57.5 63.2 67.7 77.6 63.4

Learned Bandwidths of Different Iterations. The average
learned bandwidths of different iterations are shown in Fig.
1. As expected, as the iteration rounds grow, points of the
same instance gather tighter which usually require smaller
bandwidths. After four iterations, learned bandwidths of
most classes have dropped to 0.2, which is the lowest they
can get, meaning that four iterations are enough for things
points to converge to cluster centers, which further validates
the conclusion made in the last paragraph.
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Figure 1: Relationship Between Iterations and the
Learned Bandwidths. With number of iteration increases,
the learned bandwidth decreases. At the 4th iteration, the
learned bandwidths of most classes drop near the lower
limit.

Inference Time Analysis. Inference time of different mod-
ules of DS-Net on nuScenes is reported in Table 2. The dy-
namic shifting module consumes 33.1 ms per frame, which
is attributed to down sampling and gpu-accelerated matrix
operations. After kernel operations, the seeding points are
mostly converged. Therefore, the final cluster step is not
time consuming. Compared to Mean Shifting, which takes
190.3 ms, the proposed dynamic shifting module is efficient
and performs better.

Table 2: Inference Time Analysis [ms].
Module Voxelize Cylinder Sem Ins DS Fusion Other All

Time (ms) 35.3 106.7 5.3 44.4 33.1 3.3 36.7 264.8

Ablation on Backbone Choices. To demonstrate that the
dynamic shifting module can apply to different backbones,
we report the performance of a rectangular convolution ver-
sion of plain backbone and DS-Net in Table 3.
Table 3: Results of replacing cylinder convolutions with
rectangular ones on SemanticKITTI validation set [%].

Name PQ PQ† RQ SQ mIoU

Rec Plain Backbone 53.2 58.8 64.1 72.6 61.2
Rec DS-Net 55.5 61.0 65.7 74.2 61.4

4. Implementation Details
Backbone. For both datasets, each input point is repre-
sented as a 4 dimension vector including XYZ coordinates
and the intensity. The backbone voxelizes a single frame to
480× 360× 32 voxels under the cylindrical coordinate sys-
tem. For that we should not use the information of bounding
boxes in this segmentation task, the ground truth center of
each instance is approximated by the center of its tight box
that parallel to axes which makes a better approximation
than the mass centers of the incomplete point clouds. The
bandwidth of the Mean Shift used in our backbone method
is set to 1.2. Adam solver is utilized to optimize the net-
work. The minimum number of points in a valid instance is
set to 50 for SemanticKITTI and 5 for nuScenes.

Dynamic Shifting Module. The number of the FPS down-
sampled points in the dynamic shifting module is set to
10000. The final heuristic clustering algorithm used in the
dynamic shifting module is Mean Shift with 0.65 bandwidth
for SemanticKITTI and BFS with 1.2 radius for nuScenes.
Bandwidth candidates are set to 0.2, 1.7 and 3.2 for both
datasets. The number of Iterations is set to 4 for both
datasets. We train the network with the learning rate of
0.002, epoch of 50 and batch size of 4 on four Geforce GTX
1080Ti. Each batch consumes around 7GB of GPU mem-
ory. The whole traning process takes about 3-4 days. The
dynamic shifting module only takes 3-5 hours to train on
top of a pretrained backbone.

5. Per-class Evaluation Results
Detailed per-class PQ, RQ and SQ results are presented

in table 4, 5 and 6 respectively. All the results are reported
on the held-out test set of SemanticKITTI. “∗” denotes the
unpublished method which is in 2nd place on the pub-
lic benchmark of SemanticKITTI (accessed on 2020-11-
16). Compared to semantic segmentation + detection base-
line methods, our DS-Net has huge advantages in things
classes in terms of PQ, RQ and SQ. With the help of the
dynamic shifting module, our DS-Net surpasses the back-
bone (with fusion module) in all classes in all three met-
rics, which demonstrates the effectiveness of the novel dy-
namic shifting module. Moreover, our DS-Net shows su-
periority in most classes compared with 2nd place method
“Polarnet seg”. Fig. 2 gives the screenshot of the public
leaderboard of SemanticKITTI at 2020-11-16 and our DS-
Net achieves 1st place.

6. More Visualization Results of the DS-Net
We further show the qualitative comparison of our back-

bone and DS-Net. As shown in Fig. 3, 4 and 5, a total of
9 LiDAR frames from the validation set of SemanticKITTI
are taken out for visualization. The left columns are the
visualization of the results of our bare backbone with the
consensus-driven fusion module. The middle columns show
the results of the DS-Net and the right columns are the
ground truth. For each frame, a region of interest (as framed
in red) is zoomed in to show that our DS-Net is capa-
ble of correctly handling instances with different sizes and
densities while the backbone method tends to either over-
segment or under-segment in these complex cases. Please
note that all the stuff classes points are colored following
the official definition while the colors of things instances are
randomly picked. Since the order of the predicted instance
IDs is different from that of the ground truth, the colors of
the things instances cannot correspond in predictions and
the ground truth.



Table 4: Detailed per-class PQ results on the test set of SemanticKITTI.
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KPConv[8] + PointPillars[5] 44.5 72.5 17.2 9.2 30.8 19.6 29.9 59.4 22.8 84.6 60.1 34.1 8.8 80.7 77.6 53.9 42.2 49.0 46.2 46.8
RangeNet++[6] + PointPillars[5] 37.1 66.9 6.7 3.1 16.2 8.8 14.6 31.8 13.5 90.6 63.2 41.3 6.7 79.2 71.2 34.6 37.4 38.2 32.8 47.4
KPConv[8] + PV-RCNN[7] 50.2 84.5 21.9 9.9 34.2 25.6 51.1 67.9 43.8 84.9 63.6 37.1 8.4 83.7 78.3 57.5 42.3 51.1 51.0 57.4
PolarNet seg∗ 53.3 88.7 31.7 34.6 50.9 39.1 57.5 68.7 45.1 88.1 59.7 40.5 1.0 85.7 77.7 53.2 39.7 44.8 48.6 57.6
Backbone with Fusion 53.1 90.6 15.8 44.2 46.9 28.5 63.1 67.7 47.6 88.2 59.4 29.5 3.0 82.5 79.0 56.6 42.3 48.1 53.2 63.6
DS-Net 55.9 91.2 28.8 45.4 47.2 34.6 63.6 71.1 58.5 89.1 61.2 32.3 4.0 83.2 79.6 58.3 43.4 50.0 55.2 65.3

Table 5: Detailed per-class RQ results on the test set of SemanticKITTI.
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KPConv[8] + PV-RCNN[7] 61.4 94.5 26.9 14.5 43.6 32.0 70.0 76.8 52.6 91.5 78.7 47.7 11.4 90.2 94.1 76.4 56.5 66.8 68.8 74.1
PolarNet seg∗ 64.2 96.2 36.0 48.5 58.6 43.0 66.2 77.1 50.3 96.3 74.8 54.2 1.7 92.1 94.1 72.6 53.9 61.1 66.0 76.3
Backbone with Fusion 64.5 97.4 20.5 61.1 57.2 33.2 74.0 75.6 57.8 96.2 75.1 39.2 5.0 88.8 95.5 75.8 57.1 63.8 72.2 80.4
DS-Net 66.7 97.5 32.4 62.2 56.3 38.9 74.3 78.4 62.7 96.8 76.7 42.6 6.4 89.3 95.7 77.5 58.3 65.5 74.0 81.9

Table 6: Detailed per-class SQ results on the test set of SemanticKITTI.
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KPConv[8] + PV-RCNN[7] 80.0 89.4 81.3 68.1 78.4 79.8 73.0 88.4 83.3 92.9 80.8 77.8 73.4 92.8 83.2 75.2 75.0 76.5 74.2 77.5
PolarNet seg∗ 81.1 92.2 88.0 71.4 86.9 90.8 87.0 89.1 89.8 91.4 79.9 74.8 55.4 93.1 82.6 73.3 73.8 73.2 73.6 75.5
Backbone with Fusion 80.3 93.0 77.0 72.3 81.9 85.8 85.3 89.5 82.5 91.8 79.1 75.1 60.2 92.9 82.7 74.7 74.0 75.5 73.6 79.1
DS-Net 82.3 93.6 88.9 73.0 83.8 89.0 85.6 90.7 93.3 92.0 79.8 75.8 61.4 93.2 83.2 75.2 74.4 76.3 74.5 79.7

Figure 2: Screenshot of the public leaderboard (https://competitions.codalab.org/competitions/
24025) of SemanticKITTI at 2020-11-16. Our method achieves 1st place.

https://competitions.codalab.org/competitions/24025
https://competitions.codalab.org/competitions/24025
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Figure 3: Qualitative Comparison of the Backbone and DS-Net (1).
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Figure 4: Qualitative Comparison of the Backbone and DS-Net (2).
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Figure 5: Qualitative Comparison of the Backbone and DS-Net (3).
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