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1 Introduction

This document contains the supplementary materials to the paper “Student-Teacher Learning from Clean
Inputs to Noisy Inputs”. We shall provide the detailed versions of the theorems in the paper and their
proofs. We will also provide some extra experimental results demonstrating the utility of student-teacher
learning for the `1-regularized linear networks, under the setting of section 5 of the paper.

2 Proofs for Theorems in Section 3 of the Paper

In this section, we shall present the proof for the Section 3 of the paper.

2.1 Notations and Conventions

Consider input-output training data pairs {(xi,yi)}
Ns
i=1 ⊂ Rdx × Rdy , where xi is the i-th clean training

sample, and yi is the i-th target. {εi}Nsi=1 ⊂ Rdx are the noise samples.

We write X ∈ Rdx×Ns as the clean input training data matrix, with its columns beings the xi’s. Similarly,
we construct the noisy input matrix Xε ∈ Rdx×Ns and target matrix Y ∈ Rdy×Ns .
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Given matrix M , we use row(M) and col(M) to denote the row and column spaces of matrix M . We use
rank(M) to denote the rank of the matrix. We use PM to denote the orthogonal projection matrix onto
col(M), and P⊥M for projecting onto col(M)⊥, the orthogonal complement of col(M). We use [M ]i,j to

denote the (i, j) entry in M . If M ∈ Rn×n is symmetric, for its eigen-decomposition M = UΛUT , we
assume that [Λ]1,1 ≥ [Λ]2,2 ≥ ... ≥ [Λ]n,n.

We consider a general deep linear network

WL = WLWL−1...W 1 (1)

where W i ∈ Rdi×di−1 . Set d0 := dx and dL := dy. We restrict L ≥ 2.

We denote p := mini∈{0,...,L} di. For any (WL, ...,W 1), clearly rank(WL) ≤ p. We allow the networks to
be wide, hence mini∈{0,...,L} di = min(dx, dy) is possible.

For convenience, we will sometimes write W i:j = W iW i−1...W j . Caution: do not confuse this with the
matrix notation [W ]i,j .

2.2 Training Losses

We consider two losses specialized to the deep linear networks.

The base loss (we assume that it is the MSE loss in this whole section):

(W base
L , ...,W base

1 ) = argmin
WL,...,W 1

L̂base(WL, ...,W 1)

= argmin
WL,...,W 1

‖WLXε − Y ‖2F
(2)

To define the student-teacher loss (ST loss), first pick an i∗ ∈ {1, ..., L} (we exclude the trivial case i∗ = 0),
and then define

(W st
L , ...,W

st
1 ) = argmin

WL,...,W 1

L̂st(WL, ...,W 1)

= argmin
WL,...,W 1

(
‖WLXε − Y ‖2F + λ‖W i∗:1Xε − W̃ i∗:1X‖2F

) (3)

where we use the tuple (W̃L, ..., W̃ 1) to denote the teacher’s weight. Recall that the student and teacher
share the same architecture.

2.3 Proof of Theorem 1 from Paper

In this subsection, we prove theorem 1 from the paper, i.e. we focus on the undersampling regime Ns < dx.
Moreover, we assume that L = 2 for the teacher and student. In this case, the hidden dimension of the
networks is just d1.

Recall from the paper that we assume the base loss is MSE.

We first restate the theorem from the paper, with all assumptions precisely described.

Theorem 2.1 (Theorem 1 from paper, detailed version). Denote W base
i (t) and W st

i (t) as the weights for
the student network during training with the the base loss (2) and the student-teacher loss (3), respectively.

Let the following assumptions hold:

1. The optimizer is gradient flow;

2. Ns < dx;

3. L = 2;

4. {(xi,yi)}
Ns
i=1 and {εi}Nsi=1 are all sampled independently, and x and ε are continuous random vectors;
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5. There exists some δ > 0 such that ‖W base
i (0)‖F ≤ δ and ‖W st

i (0)‖F ≤ δ for all i;

6. The teacher network (W̃ 2, W̃ 1) minimizes the training loss for clean data:

(W̃ 2, W̃ 1) = argmin
W 2,W 1

L̂teacher(W 2,W 1) = argmin
W 2,W 1

‖W LX − Y ‖2F (4)

7. The W base
i (0)’s are initialized with the balanced initialization [1], i.e.

W base
2 (0)TW base

2 (0) = W base
1 (0)W base

1 (0)T (5)

8. The gradient flow successfully converges to a global minimizer for both the MSE- and student-teacher-
trained networks;

9. The weights W st
i (t) remain in a compact set for t ∈ [0,∞). In particular, denote ‖W st

i (t)‖F ≤M, t ∈
[0,∞).

When δ is sufficiently small, the following is true almost surely:

lim
t→∞

‖W base
L (t)−W st

L (t)‖F ≤ Cδ (6)

where C is a constant independent of δ.

Proof. By lemma 2.2 and lemma 2.3 below, and applying the triangle inequality, we obtain

lim
t→∞

‖W base
L (t)−W st

L (t)‖F ≤ Cδ (7)

where C ∈ O(M + p1/4‖UpU
T
p Y (XT

εXε)
−1XT

ε ‖
1/2
F ) when δ is sufficiently small (Up shall be defined

below).

2.3.1 Main Lemmas

We define and elaborate on some terms that will be used frequently throughout this subsection.

First recall that p := min(dx, d1, dy). We define the matrix Up ∈ Rdy×p as follows. The columns of Up

are the dominant p eigenvectors of the matrix Y Y T = UΛUT (assuming that the eigenvalues in all the
eigen-decompositions are sorted from largest to smallest). Note that if rank(Y ) < p, then one can choose
arbitrary unit vectors orthogonal to the dominant rank(Y ) eigenvectors of Y Y T as the last p − rank(Y )
columns in Up.

Lemma 2.2 (Bias of MSE-induced Gradient Flow). With the assumptions in the main theorem, the following
holds almost surely:

lim
t→∞

W base
L (t) = UpU

T
p Y (XT

εXε)
−1XT

ε +W (δ) (8)

where ‖W (δ)‖F ≤ Cδ, for some C ∈ O(p1/4γ1/2), when δ is sufficiently small, and γ := ‖UpU
T
p Y (XT

εXε)
−1XT

ε ‖F .

Proof. In this proof, for the sake of readability, we will write W i(t) = W base
i (t). We also abuse notation a

bit by writing W i(∞), with the understanding that they mean limt→∞W i(t). These limits do exist, due
to our assumption that gradient flow converges to a global minimizer.

The proof has three steps:

1. Structure of the Solution.

We prove that
W 2(∞)W 1(∞) = UpU

T
p Y (XT

εXε)
−1XT

ε +W 2(∞)W 1(0)⊥ (9)

where we orthogonally decomposed the row space W 1(0) = W 1(0)‖+W 1(0)⊥, where row(W 1(0)‖) ⊆
col(Xε) and row(W 1(0)⊥) ⊆ col(Xε)

⊥.
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We begin by observing the updates made by gradient flow to W 1:

∂W 1

∂t
=η(W 2(t)TY XT

ε −W 2(t)TW 2(t)W 1(t)XεX
T
ε ). (10)

Here, η is the update step size, and assumed to be close to 0. As explained in [1] section 5, when
η2 ≈ 0, the discrete gradient descent steps translate into the gradient flow differential equation. The
right-hand side of this differential equation is simply the derivative of the base MSE loss (2) with
respect to W 1.

Notice that row
(
∂W 1

∂t

)
⊆ col(Xε) at all time. We have the following:

row(W 1(∞)−W 1(0)) = row

(∫ ∞
t=0

∂W 1

∂t
dt

)
⊆ col(Xε). (11)

The infinite integral is well-defined since we assumed the convergence of gradient flow. The above
observation, combined with our definition of W 1(0)‖ and W 1(0)⊥ from before, imply that gradient
flow only modifies W 1(0)‖, and leaves the W 1(0)⊥ untouched. In other words, decomposing the row
vectors of W 1(∞) orthogonally w.r.t col(Xε) (identical to what we did with W 1(0)), we can write

W 1(∞) = W 1(∞)‖ +W 1(∞)⊥ = W 1(∞)‖ +W 1(0)⊥. (12)

The important point to notice is that,

W 2(∞)W 1(∞) = W 2(∞)W 1(∞)‖ +W 1(∞)W 1(0)⊥. (13)

Recalling the expression of global minimizers stated in Lemma 2.4, with probability 1 (over the random-
ness in the training sample matrixXε), all the global minimizers share exactly the same structure as we
have forW 2(∞)W 1(∞), i.e. these minimizers consist of two terms, first, the minimum-Frobenius-norm
solution UpU

T
p Y (XT

εXε)
−1XT

ε whose row space lies in col(Xε), and second, the “residue matrix” R

whose row space lies in col(Xε)
⊥. It follows that W 2(∞)W 1(∞)‖ = UpU

T
p Y (XT

εXε)
−1XT

ε , which
finishes the first step of the overall proof.

2. Uniform Upper Bound on ‖W 2(∞)‖F for Small and Balanced Initialization.

We relate ‖W 2(∞)‖F to ‖W 2(∞)W 1(∞)‖F .

Let’s denote the SVDs of W 2(∞) = U (2)Λ(2)V (2)T , and W 1(∞) = U (1)Λ(1)V (1)T .

A deep linear network that is initialized in the balanced fashion remains balanced throughout training
[1] (theorem 1), therefore, we have that W T

2 (∞)W 2(∞) = W 1(∞)W T
1 (∞), which means that

V (2)Λ(2)TΛ(2)V (2)T = U (1)Λ(1)Λ(1)TU (1)T . (14)

In other words, Λ(2)TΛ(2) = Λ(1)Λ(1)T , i.e. [Λ(2)]i,i = [Λ(1)]i,i for i ∈ {1, ..., d1}, and the orthogonal

matrices V (2) and U (1) are equal up to some rotation in the eigenspaces corresponding to each eigen-
value in Λ(2)TΛ(2) (see the details in [1] Appendix A.1). It also follows that, rank(Λ(1)) = rank(Λ(2)) ≤
p = min(dx, d1, dy). Using equations (23) and (24) (and the equations before these two) from [1], it
follows that

‖W 2(∞)W 1(∞)‖F =‖Λ(2)Λ(2)T ‖F

=

√√√√ p∑
i=1

[Λ(2)]4i,i.
(15)

Recall that, by Hölder’s inequality, ‖x‖1 ≤
√
p‖x‖2 for any x ∈ Rp. Therefore

‖W 2(∞)‖2F =

p∑
i=1

[Λ(2)]2i,i ≤
√
p

√√√√ p∑
i=1

[Λ(2)]4i,i =
√
p‖W 2(∞)W 1(∞)‖F . (16)
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Let’s study the term ‖W 2(∞)W 1(∞)‖F . By the Pythagorean theorem, ‖W 2(∞)W 1(∞)‖‖2F +
‖W 2(∞)W 1(0)⊥‖2F = ‖W 2(∞)W 1(∞)‖2F . Since ‖W 1(0)‖F = δ, and recalling the definition γ :=
‖UpU

T
p Y (XT

εXε)
−1XT

ε ‖F , we have

‖W 2(∞)W 1(∞)‖2F ≤ γ2 + δ2‖W 2(∞)‖2F

=⇒ ‖W 2(∞)W 1(∞)‖F ≤
√
γ2 + δ2‖W 2(∞)‖2F < γ + δ‖W 2(∞)‖F .

(17)

Therefore,
‖W 2(∞)‖2F <

√
pγ +

√
pδ‖W 2(∞)‖F

⇐⇒ ‖W 2(∞)‖2F −
√
pδ‖W 2(∞)‖F −

√
pγ < 0

⇐⇒
√
pδ −

√
pδ2 + 4

√
pγ

2
< ‖W 2(∞)‖F <

√
pδ +

√
pδ2 + 4

√
pγ

2

=⇒ ‖W 2(∞)‖F <
√
pδ +

√
pδ2 + 4

√
pγ

2
<
√
pδ + p1/4γ1/2.

(18)

The upper bound is clearly O(p1/4γ1/2) for δ sufficiently small.

3. Conclusion.

The desired result now follows by combining 1. and 2., and by applying Cauchy-Schwartz to ‖W 2(∞)W 1(0)⊥‖F ,
with C =

√
pδ + p1/4γ1/2.

Lemma 2.3 (Bias of Student-teacher-induced Gradient Flow). With the assumptions in the main theorem,
the following holds:

lim
t→∞

W st
L (t) = UpU

T
p Y (XT

εXε)
−1XT

ε +W (δ) (19)

where ‖W (δ)‖F ≤ Mδ; recall that we assumed ‖W st
i (t)‖ ≤ M for all t ∈ [0,∞). In other words, small

initialization leads to limt→∞W L(t) ≈ UpU
T
p Y (XT

εXε)
−1XT

ε .

Proof. We write W i(t) = W st
i (t) for notational simplicity.

First observe that

∂W 1

∂t
=ηW 2(t)T (Y −W 2(t)W 1(t)Xε)X

T
ε + ηλ(W̃ 1X −W 1(t)Xε)X

T
ε . (20)

It follows that row
(
∂W 1

∂t

)
⊆ col(Xε). Therefore, arguing similarly to step 1 of the proof of lemma 2.2,

we may write W 1(t) = W 1(t)‖ + W 1(t)⊥ = W 1(t)‖ + W 1(0)⊥, where row(W 1(t)‖) ⊆ col(Xε), and

row(W 1(0)⊥) ⊆ col(Xε)
⊥.

Knowing the form of global minimizers of the ST loss from Lemma 2.5, we know

WL(∞) = UpU
T
p Y (XT

εXε)
−1XT

ε +W 2(∞)W 1(0)⊥ (21)

Therefore ‖WL(∞)−UpU
T
p Y (XT

εXε)
−1XT

ε ‖F ≤Mδ.

2.3.2 Auxilliary Lemmas

Lemma 2.4 (Global minimizers of MSE loss (2), N < dx). The set of global minimizers to the MSE loss
(2) is the following almost surely (over the randomness of the training samples):

{W 2,W 1|W 2W 1 = UpU
T
p Y (XT

εXε)
−1XT

ε +R, row(R) ⊆ col(Xε)
⊥} (22)

where the columns of Up are the dominant p eigenvectors of the matrix Y Y T = UΛUT . Note that if
rank(Y ) < p, then one can choose arbitrary unit vectors orthogonal to the dominant rank(Y ) eigenvectors
of Y Y T as the last p− rank(Y ) columns in Up.
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Proof. First of all, note that since x and ε are continuous random vectors, Xε must be full rank almost
surely, so (XT

εXε)
−1 exists.

Now, we note that

{W ∈ Rdy×dx |(rank(W ) ≤ p) ∧ (W minimizes ‖W ′Xε − Y ‖2F }
={W 2W 1|(W 2 ∈ Rdy×d1) ∧ (W 1 ∈ Rd1×dx) ∧ ((W 2,W 1) minimizes (2))}.

(23)

To see “⊆” direction, take any W in the first set, we can decompose it as W = AWBW where AW ∈ Rdy×d1
and BW ∈ Rd1×dx , and (AWBW ) clearly minimizes (2). The other direction can also be easily shown.

It follows that, the set of solutions WL = W 2W 1 that we need to solve for is the same as the set

argmin
rank(W )≤d1

‖Y −WXε‖2F . (24)

This is basically a low-rank approximation problem. By the Eckart-Young-Mirsky theorem [4], the matrix
UpU

T
p Y is the best approximation to the matrix Y under the Frobenius norm with rank no greater than p.

To achieve this solution, we need

WXε = UpU
T
p Y

⇐⇒WXε = UpU
T
p Y (XT

εXε)
−1XT

εXε

⇐⇒ (W −UpU
T
p Y (XT

εXε)
−1XT

ε )Xε = 0

⇐⇒W −UpU
T
p Y (XT

εXε)
−1XT

ε = R, s.t. row(R) ⊆ col(Xε)
⊥.

(25)

which concludes the proof.

Lemma 2.5 (Global Minimizers of ST loss (3), N < dx). Choose a global minimizer (W̃ 2, W̃ 1) of (4).
Then almost surely, the set of global minimizers to (3) is the following:

{W 2 ∈ Rdy×d1 ,W 1 ∈ Rd1×dx |W 2W 1 = UpU
T
p Y (XT

εXε)
−1XT

ε + (W̃ 2 +R2)R1,

R1 ∈ Rd1×dx ∧ row(R1) ⊆ col(Xε)
⊥ ∧ R2 ∈ Rdx×d1 ∧ row(R2) ⊆ col(W̃ 1X)⊥}.

(26)

Remark. Notice that this solution set is just a subset of the MSE solution set from lemma 2.4. In the MSE
solution set, the “residue matrix” R just satisfies row(R) ⊆ col(Xε)

⊥. For this ST loss solution set, the

“residue matrix” also satisfies row((W̃ 2 +R2)R1) ⊆ col(Xε)
⊥, although it does have more structure.

Proof. Like in the last lemma, note that since x and ε are continuous random vectors, Xε must be full rank
almost surely, so (XT

εXε)
−1 exists.

The proof relies on the fact that,

min
W 2,W 1

{
‖Y −W 2W 1Xε‖2F + λ‖W̃ 1X −W 1Xε‖2F

}
≥ min
W 2,W 1

{
‖Y −W 2W 1Xε‖2F

}
+ min
W 1

{
λ‖W̃ 1X −W 1Xε‖2F

} (27)

We can see that the lower bound is achievable only when we individually minimize the two loss terms in the

lower bound, in other words, denoting l1(W 2,W 1) = ‖Y −W 2W 1Xε‖2F , and l2(W 1) = ‖W̃ 1X−W 1Xε‖2F ,
equality is true only for (W 2,W 1) that lies in the following intersection

{W 2,W 1|W 2,W 1 minimizes l1} ∩ {W 1|W 1 minimizes l2} (28)

We proceed to minimize the two terms individually.
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First notice that the regularizer can be made 0 with the following set of expressions for W 1

{W 1|W 1 = W̃ 1X(XT
εXε)

−1XT
ε +R1, R1 ∈ Rd1×dx ∧ row(R1) ⊆ col(Xε)

⊥} (29)

Its proof is very similar to (25).

We already know the set of minimizers of the MSE loss from the previous section. We take the intersection

of the two sets. First note that W 1Xε = W̃ 1X, therefore, for W 2,W 1 to minimize the MSE loss l1, we

need W 2W̃ 1X = UpU
T
p Y . But since (W̃ 2, W̃ 1) minimizes (4), W̃ 2W̃ 1X = UpU

T
p Y has to be true (can

be proven using essentially the same argument as in the previous lemma). In other words,

W 2W̃ 1X = W̃ 2W̃ 1X ⇐⇒ (W 2 − W̃ 2)W̃ 1X = 0 (30)

The rest of the proof follows directly from here.

2.4 Proof of Theorem 2 from Paper

Similar to the proof for theorem 1 of the paper, we restate the theorem itself precisely first, and then present
its proof and the relevant lemmas.

Again, recall that the base loss is MSE.

Theorem 2.6 (Theorem 2 from paper, detailed version). Assume the following:

1. N ≥ dx, and Xε is full rank;

2. L ≥ 2 (a general deep linear network);

3. p := mini∈{0,...,L} di ≥ rank(Y XT
ε (XεX

T
ε )−1)

4. W̃ LX = Y

Then the global minimizers
W base

L = W st
L = Y XT

ε (XεX
T
ε )−1 (31)

Remark. Let us interpret the assumptions.

• Assumption 3. ensures that W base
L = Y XT

ε (XεX
T
ε )−1 can be true.

Intuitively speaking, this assumption is requiring the student to be sufficiently “complex” for the task
that it needs to solve.

• Assumption 4. enforces that the teacher perfectly interpolates the clean input-output training pairs.

This assumption can be satisfied by enforcing, for instance, that rank(X) ≤ dx, and the maximum

possible rank of W̃L is no less than rank

(
Y
(
X
T
X
)−1

X
T
)

, where X is constructed by removing

every linearly dependent column of X.

Intuitively speaking, we are requiring that the task which the teacher needs to solve is sufficiently
“simple”.

• If a slightly stronger condition was added, the argument in our proof can in fact handle the situation
that the teacher and the student networks have different architectures, and the only requirements
on the teacher are that, its hidden feature’s dimension matches di∗ , and the teacher can perfectly
interpolate the clean training samples.

Proof. This proof is divided into two parts. We study the MSE and student-teacher solutions respectively.
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1. We first study the global minimizers of the MSE loss. First of all, the following is true:

{WL|(WL, ...,W 1) minimizes (2))}

=

{
W
∣∣∣W = argmin

rank(W )≤p
‖WXε − Y ‖2F

}
(32)

To see the “⊆” direction, take any (WL, ...,W 1) that minimizes the MSE loss (2), clearly rank(WL) ≤
p. Furthermore, WL must minimize the single-layer-network rank-restricted MSE loss, since if it was
not true, then there exists some W ∗ with rank(W ∗) ≤ p such that

‖W ∗Xε − Y ‖2F < ‖WLXε − Y ‖2F (33)

But clearly one can find a tuple (W ∗
L, ...,W

∗
1) that decomposes W ∗, which contradicts the minimality

of (WL, ...,W 1). The “⊇” direction can be proven in a similar way.

Therefore, it suffices to study the set of global minimizers of the rank-restricted MSE problem

W = argmin
rank(W )≤p

‖WXε − Y ‖2F (34)

With our assumption that p ≥ rank(Y XT
ε (XεX

T
ε )−1), clearlyW is unique andW = Y XT

ε (XεX
T
ε )−1.

It follows that
W base

L = Y XT
ε (XεX

T
ε )−1 (35)

2. We now study the student-teacher loss (3).

Note the inequality

min
(WL,...,W 1)

L̂st(WL, ...,W 1) ≥ min
(WL,...,W 1)

L̂base(WL, ...,W 1) + λ min
(WL,...,W 1)

‖W i∗:1Xε − ÊX‖2F
(36)

The equality can only be achieved by solution(s) of the following form:

(WL, ...,W 1) ∈{(WL, ...,W 1)|(WL, ...,W 1) minimizes L̂base(WL, ...,W 1)} ∩

{(WL, ...,W 1)|(WL, ...,W 1) minimizes ‖W i∗:1Xε − W̃ i∗:1X‖2F }
(37)

Eventually we will show that this intersection is nonempty, and the solutions take on a specific form.

Let’s start by examining the second set in the intersection above. For (WL, ...,W 1) to belong to the
second set, we only have one unique choice for the product of the matrices in the tuple (W i∗ , ...,W 1):

Ŵ i∗:1 := W̃ i∗:1XX
T
ε (XεX

T
ε )−1 (38)

This is just the global minimizer of the loss ‖W i∗:1Xε− W̃ i∗:1X‖2F with rank constraint no less than

rank(W̃ i∗:1XX
T
ε (XεX

T
ε )−1). W i∗:1 can indeed take on this value, since rank(W̃ i∗:1XX

T
ε (XεX

T
ε )−1) ≤

p, while p is the maximum rank W i∗:1 can take on.

We now need to minimize L̂base, assuming that W i∗:1 = Ŵ i∗:1:

argmin
(WL,...,W i∗+1)

‖WL:i∗+1Ŵ i∗:1Xε − Y ‖2F

= argmin
(WL,...,W i∗+1)

‖WL:i∗+1W̃ i∗:1XX
T
ε (XεX

T
ε )−1Xε − Y ‖2F

(39)

We may simplify the above loss as follows:

‖WL:i∗+1W̃ i∗:1XX
T
ε (XεX

T
ε )−1Xε − Y ‖2F

=‖WL:i∗+1W̃ i∗:1XX
T
ε (XεX

T
ε )−1Xε − Y XT

ε (XεX
T
ε )−1Xε + Y XT

ε (XεX
T
ε )−1Xε − Y ‖2F

=‖WL:i∗+1W̃ i∗:1XX
T
ε (XεX

T
ε )−1Xε − Y XT

ε (XεX
T
ε )−1Xε‖2F + ‖Y XT

ε (XεX
T
ε )−1Xε − Y ‖2F

(40)
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The last equality comes from the Pythagorean theorem, the fact that W sol = Y XT
ε (XεX

T
ε )−1 is the

solution to the MSE problem ‖WXε − Y ‖2F , and the following equilibrium identity

(W solXε − Y )XT
ε = 0 =⇒ row(W solXε − Y ) ⊥ row(Xε) (41)

Since the second term ‖Y XT
ε (XεX

T
ε )−1Xε − Y ‖2F in (40) is independent of W j for all j, we may

discard it in the minimization problem. Therefore, we are left to solve

argmin
(WL,...,W i∗+1)

‖WL:i∗+1W̃ i∗:1XX
T
ε (XεX

T
ε )−1Xε − Y XT

ε (XεX
T
ε )−1Xε‖2F (42)

If the set of (WL, ...,W i∗+1) that can make the above loss vanish is nonempty, then they are clearly
the only set of minimizers of the loss.

But what exactly does making (42) zero mean? Since W̃LX = Y , the following rearrangement is true:

WL:i∗+1W̃ i∗:1XX
T
ε (XεX

T
ε )−1Xε − Y XT

ε (XεX
T
ε )−1Xε

=WL:i∗+1W̃ i∗:1XX
T
ε (XεX

T
ε )−1Xε − W̃L:i∗+1W̃ i∗:1XX

T
ε (XεX

T
ε )−1Xε

=(WL:i∗+1 − W̃L:i∗+1)W̃ i∗:1XX
T
ε (XεX

T
ε )−1Xε

(43)

But notice that:

(WL:i∗+1 − W̃L:i∗+1)W̃ i∗:1XX
T
ε (XεX

T
ε )−1Xε = 0

⇐⇒ (WL:i∗+1 − W̃L:i∗+1)W̃ i∗:1XX
T
ε (XεX

T
ε )−1xtest = 0,∀xtest ∈ Rdx

(44)

To see “ =⇒ ”, notice that since Xε is of full column rank, for any xtest ∈ Rdx , xtest = Xεα for some
α ∈ RN . So

(WL:i∗+1 − W̃L:i∗+1)W̃ i∗:1XX
T
ε (XεX

T
ε )−1xtest

=(WL:i∗+1 − W̃L:i∗+1)W̃ i∗:1XX
T
ε (XεX

T
ε )−1Xεα

=0α

=0

(45)

The “⇐= ” direction is obvious.

The condition on WL:i∗+1 in (44) is clearly equivalent to the following:

(WL:i∗+1 − W̃L:i∗+1)W̃ i∗:1XX
T
ε (XεX

T
ε )−1 = 0 (46)

Therefore, driving (42) to zero is equivalent to the condition (46). Now, what is the set of (WL, ...,W i∗+1)
that satisfies this condition, and more importantly, is this set even nonempty? We shall prove in the
next paragraph that this set is indeed nonempty.

By assumption 2. in the theorem statement, rank(Y XT
ε (XεX

T
ε )−1) ≤ p, and since W̃LX = Y ,

rank(W̃L:i∗+1P W̃ i∗:1XX
T
ε (XεXT

ε )−1) ≤ rank(W̃L:i∗+1W̃ i∗:1XX
T
ε (XεX

T
ε )−1) ≤ p (47)

must be true. The first inequality needs some justification, which we will discuss below. But assuming
that it is true, we now know that there indeed exists a (set of) WL:i∗+1 such that (46) is true, in fact,

WL:i∗+1 = W̃L:i∗+1P W̃ i∗:1XX
T
ε (XεXT

ε )−1 is an example.

Going back to the first inequality, it holds because for any A,B for which their product AB makes
sense, rank(AB) ≥ rank(APB). To see this, consider the following situations. Case 1: B has linearly
independent columns. Then rank(APB) = rank(AB(BTB)−1BT ) ≤ rank(AB). Case 2: B does not
have linearly independent columns. Construct B from B by removing the linearly dependent columns
of B. Notice that rank(AB) = rank(AB). But

rank(APB) = rank(APB) = rank(AB(B
T
B)−1B

T
) ≤ rank(AB) = rank(AB) (48)
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We now arrive at the fact that there does exist (a set of) (WL, ...,W i∗+1) that satisfies (46), therefore,
they form the set of minimizers of (42).

But clearly the identity (46) which characterizes this set of minimizers is equivalent to

WL:i∗+1W̃ i∗:1XX
T
ε (XεX

T
ε )−1 = W̃L:i∗+1W̃ i∗:1XX

T
ε (XεX

T
ε )−1 (49)

and because Ŵ i∗:1 = W̃ i∗:1XX
T
ε (XεX

T
ε )−1 and W̃LX = Y , the above equality is equivalent to

WL:i∗+1Ŵ i∗:1 = Y XT
ε (XεX

T
ε )−1 (50)

We have now arrived at the point to say that, the following set from (37) is indeed nonempty

{(WL, ...,W 1)|(WL, ...,W 1) minimizes L̂base(WL, ...,W 1)} ∩

{(WL, ...,W 1)|(WL, ...,W 1) minimizes ‖W i∗:1Xε − W̃ i∗:1X‖2F }
(51)

and any (WL, ...,W 1) belonging to this intersection must satisfy the property

W i∗:1 = Ŵ i∗:1, and WL:i∗+1Ŵ i∗:1 = Y XT
ε (XεX

T
ε )−1 (52)

Finally, we can conclude that, due to the nonemptiness of the intersection of the two sets from (37), the
equality in (36) is indeed achievable, and every solution (W st

L , ...,W
st
1 ) achieving the equality satisfies

W st
L = Y XT

ε (XεX
T
ε )−1 = W base

L (53)

The proof is complete.

Corollary 2.6.1. If N ≥ dx, W̃ LX = Y , and p = min(dx, dy) (wide networks), then the global minimizers
of MSE and student-teacher are identical.

Proof. The inequality rank(Y XT
ε (XεX

T
ε )−1/2) ≤ min(dy, dx) = p must be true, so the application of the

above theorem is legal.

2.5 Nonlinear-Teacher-Network Results

Theorem 2.7 (Nonlinear teacher, N < dx). Denote W base
i (t) and W st

i (t) as the weights for the student
network trained with the the base loss (2), and the student network trained with the student-teacher loss (3),
respectively.

Let the following assumptions hold:

1. Gradient flow is the optimizer;

2. Ns < dx;

3. L = 2;

4. {(xi,yi)}
Ns
i=1 and {εi}Nsi=1 are all sampled independently, and x and ε are continuous random vectors;

5. There exists some δ > 0 such that ‖W base
i (0)‖F ≤ δ and ‖W st

i (0)‖F ≤ δ for all i;

6. The teacher network takes the form W̃ 2σ(W̃ 1x), with σ(·) being a (nonlinear) entry-wise activation

function. Furthermore, assume that W̃ 2σ(W̃ 1X) = Y , i.e. the teacher network can perfectly solve
the clean training problem.

7. The W base
i (0)’s are initialized with the balanced initialization;

8. Gradient flow successfully converges to a global minimizer for both the MSE- and ST-trained networks;

10



9. The weights W st
i (t) remain in a compact set for t ∈ [0,∞). In particular, denote ‖W st

i (t)‖F ≤M, t ∈
[0,∞).

Then the following is true almost surely:

lim
t→∞

‖W base
L (t)−W st

L (t)‖F ≤ Cδ (54)

for some C that is bounded as δ tends to 0.

Proof. Note that the only difference in assumption between this theorem and the linear-teacher-network

theorem is that, we assume the teacher network has nonlinear activation now, and W̃ 2σ(W̃ 1X) = Y .
Consider the following two points.

• Notice that even though the activation function of the teacher is now nonlinear, W̃ 2σ(W̃ 1X) still is

the product of two matrices, W̃ 2 ∈ Rdy×d1 and σ(W̃ 1X) ∈ Rd1×dx , therefore, Y has at most rank p.
It also follows that UpU

T
p Y = Y . Noting that Xε is full-rank almost surely, it is indeed possible to

find (W 2,W 1) such that W 2W 1Xε = Y . In fact, the base-loss solution set is now

{W 2,W 1|W 2W 1 = Y (XT
εXε)

−1XT
ε +R, row(R) ⊆ col(Xε)

⊥} (55)

Therefore, using exactly the same argument as in the proof for theorem 1 of the paper, we can
show that, W base

2 (t)W base
1 (t) tends to Y (XT

ε Xε)
−1XT

ε +W base(δ) as t → ∞, with ‖W base(δ)‖F ∈
O(p1/4‖Y (XT

εXε)
−1XT

ε ‖
1/2
F ) when δ is sufficiently small.

• For W st
2 (t)W st

1 (t), we note that the global minimizers of the student-teacher loss is that set

{W 2 ∈ Rdy×d1 ,W 1 ∈ Rd1×dx |W 2W 1 = Y (XT
εXε)

−1XT
ε + (W̃ 2 +R2)R1,

R1 ∈ Rd1×dx ∧ row(R1) ⊆ col(Xε)
⊥ ∧ R2 ∈ Rdx×d1 ∧ row(R2) ⊆ col(σ(W̃ 1X))⊥}

(56)

The “residue matrix” (W̃ 2 +R2)R1 still satisfies the property that row((W̃ 2 +R2)R1) ⊆ col(X⊥ε ).
Therefore, the gradient-flow argument for W st

2 (t)W st
1 (t) still holds, so W st

2 (t)W st
1 (t) must also tend

to Y (XT
ε Xε)

−1XT
ε +W st(δ) as t→∞, with ‖W st(δ)‖F ≤Mδ.

Combining the above two results finishes our proof.

Theorem 2.8 (Nonlinear teacher, N ≥ dx). Assume the following:

1. N ≥ dx, and Xε is full rank;

2. L ≥ 2 (a general deep linear network);

3. p := mini∈{0,...,L} di ≥ rank(Y XT
ε (XεX

T
ε )−1)

4. Assume that the teacher takes the form W̃F (x), with the output dimension of F (·) equal to di∗ . Also
denote F (X) ∈ Rdi∗×Ns as the features the teacher provides to the student, i.e. the student-teacher
loss has the form

argmin
WL,...,W 1

(
‖W LXε − Y ‖2F + λ‖W i∗:1Xε − F (X)‖2F

)
(57)

Furthermore, assume that the teacher satisfies W̃F (X) = Y .

5. mini∈{0,...,i∗} di ≥ rank(F (X)XT
ε (XεX

T
ε )−1).

Then the global minimizers
W base

L = W st
L = Y XT

ε (XεX
T
ε )−1 (58)

Proof. We prove the theorem in two main steps.
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1. Since p := mini∈{0,...,L} di ≥ rank(Y XT
ε (XεX

T
ε )−1) is still true, the solution for the base loss does

not change from before:
W base

L = Y XT
ε (XεX

T
ε )−1 (59)

2. For the student-teacher loss, we argue in almost the same way as the linear-teacher case. We still prove
that

∅ 6={(WL, ...,W 1)|(WL, ...,W 1) minimizes L̂base(WL, ...,W 1)} ∩
{(WL, ...,W 1)|(WL, ...,W 1) minimizes ‖W i∗:1Xε − F (X)‖2F }

(60)

Like before, we focus on the second set first. To minimize ‖W i∗:1Xε − F (X)‖2F , due to assumption
5., only one solution exists:

W i∗:1 = Ŵ i∗:1 := F (X)XT
ε (XεX

T
ε )−1 (61)

Now, to obtain the solutions in the intersection of the two sets, we assume W i∗:1 = Ŵ i∗:1 and check

what value WL:i∗+1 can take on. One particular choice is simply WL:i∗+1 = W̃ , in which case we

obtain WL = Y XT
ε (XεX

T
ε )−1, which indeed minimizes L̂base. It follows that the above intersection

is nonempty, so arguing similarly to the linear-teacher case, we may conclude that

W base
L = W st

L = Y XT
ε (XεX

T
ε )−1 (62)
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3 Proofs for Theorem 3 in Section 5 of the Paper

In this section, we shall present the proof for theorem 3 of the paper.

3.1 Notations, Conventions and Assumptions

Most of the notations and conventions we use are the same as the ones we use for the previous section. We
only emphasize the differences here.

Denote X ∈ RN×dx as the clean design matrix, defined by [X]i,: = xTi . Similarly, Z ∈ RN×dx is the noise
matrix, defined by [Z]i,: = εTi . Xε = X+Z is the noisy training input matrix. The target vector is y ∈ Rdy .
Recall that the individual target samples are one-dimensional as we are focusing on linear regression in this
section.

Given some index set S ⊆ {1, ..., n} and vector β ∈ Rn, we use βS ∈ R|S| to denote the sub-vector created
by extracting the entries in β with indices contained in S, e.g. given β = (1, 5, 2, 10) and S = {2, 4}, then
βS = (5, 10). Similarly, given a matrix M ∈ Rm×n, we denote MS ∈ Rm×|S| to be the sub-matrix of M ,
created by extracting the columns in M with indices contained in S.

We restate the basic assumptions made in the paper, in addition to a few that we specify on the input data:

1. The learning problem is linear regression. The ground truth is a linear model β∗ ∈ Rd, with sparsity
level s, i.e. only s entries in it are nonzero.

2. The student and teacher networks are both shallow networks.

3. We set m = s, i.e. the hidden dimension of the networks (i.e. the output dimension of W 1) is equal
to s.

4. We use `1 regularization during training.

5. The student’s architecture is W̃ 2PW 1(x+ε), and teacher’s architecture is W̃ 2PW̃ 1x. W̃ 2 ∈ R1×m/g,

and W 1, W̃ 1 ∈ Rm×dx . Moreover, P ∈ R(m/g)×m, g ∈ N is a divisor of m, and P i,j = 1 if j ∈
{ig, ..., (i + 1)g}, and zero everywhere else. Multiplication with P essentially sums every g neurons’
output, similar to how average pooling works in convolutional neural networks.

• In Theorem 3, the weights of the teacher satisfy [W̃ 2]i = 1 for all i = 1, ..., s/g; [W̃ 1]i,i = β∗i for
i = 1, ..., s, and the remaining entries are all zeros.

• Figure 1 illustrates PW̃ 1x, for a simple case of dx = 4, g = 2, and the ground truth is β∗ =
(β∗1 , ..., β

∗
4). This figure visualizes how the teacher’s hidden features are pooled, and presented to

the student.

6. Throughout this whole section, we shall assume that x comes from a distribution whose covariance
matrix is the identity. The noise ε ∼ N (0, σ2

εIdx×dx), and σε < 1.

3.2 Simplifying the Problem

We now introduce an equivalent, but more succinct, formulation of the student-teacher learning procedure
in Section 5.2, so that we can present the proofs more easily. As we will explain soon, the student-teacher
learning setting in section 5.2 of the paper can be decomposed into s/g subproblems of the following form:
for i ∈ {1, ..., s/g},

wi = argmin
w

‖Xεw −Xβ∗i‖22/Ns + λi‖w‖1 (63)

where β∗ij = β∗j for j ∈ {ig, ..., (i+ 1)g} and zero everywhere else (it has a sparsity level of g). We denote

the support set supp(β∗i) to be Si (i.e. it is the set of indices on which β∗i is nonzero).
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Figure 1: An example of the operation PW̃ 1x. In this example, dx = 4, g = 2. Note that each hidden

neuron of the teacher [W̃ 1]i,: only encodes one entry from β∗. The hidden features [W̃ 1]Ti,:x are then pooled

by the matrix P . Therefore, in the feature difference loss ‖PW 1(x + ε) − PW̃ 1x‖22, the first group of
student neurons sees β∗1x1 + β∗2x2, while the second group sees β∗3x3 + β∗4x4. Consequently, each group of
the student’s neurons sees the action of a 2-sparse subset of β∗ on the clean input signal x.

To see why the above simplified training problem is equivalent to the paper’s one, recall that the problem
stated in the paper is the following (the feature difference loss itself, without the `1 regularization)

1

Ns

Ns∑
i=1

∥∥∥P [W 1(xi + εi)− W̃ 1xi
]∥∥∥2

2
(64)

But since P i,j = 1 if j ∈ {ig, ..., (i + 1)g}, and zero everywhere else, the above loss can be written as a
collection of losses independent from each other (enumerated by i ∈ {1, ..., s/g}):

1

Ns

∥∥∥∥∥∥Xε

(i+1)g∑
j=ig

[W 1]Tj,:

−X
(i+1)g∑

j=ig

[W̃ 1]Tj,:

∥∥∥∥∥∥
2

2

(65)

For the term
∑(i+1)g
j=ig [W̃ 1]Tj,:, since in the theorem we assume that [W̃ 1]i,i = β∗i for i = 1, ..., s, and the

remaining entries are all zeros, the vector
∑(i+1)g
j=ig [W̃ 1]Tj,:’s ig-th to (i+ 1)g-th entries are equal to those of

β∗ at the same indices, and zero everywhere else. This is where the β∗i came from.

Let’s now add in the `1 regularization. For every i ∈ {1, ..., s/g}, we have the loss

1

Ns

∥∥∥∥∥∥Xε

(i+1)g∑
j=ig

[W 1]Tj,:

−Xβ∗i
∥∥∥∥∥∥
2

2

+ λi

∥∥∥∥∥∥
(i+1)g∑
j=ig

[W 1]Tj,:

∥∥∥∥∥∥
1

(66)

Note that we regularize every group of hidden neurons in the student network. One can verify that the

minimizer(s)
∑(i+1)g
j=ig [W 1]Tj,: of the above loss is the same as the minimizer(s) wi of the following loss:

‖Xεw
i −Xβ∗i‖22/Ns + λi‖wi‖1 (67)
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By noting that W̃ 2’s entries are all 1’s, the simplification of the testing loss E
[(
W̃ 2PW 1(x+ ε)− β∗Tx

)2]
can be argued in a similar way as above, and it simplifies to

E


 s/g∑
i=1

wiT (x+ ε)− β∗Tx

2
 . (68)

3.3 Optimal Test Error

Before going into the theorem and its proof, let us try to understand what the optimal testing error of this
regression problem is.

Since we assumed that x comes from a distribution with identity covariance, and ε ∼ N (0, σ2
εIdx×dx), the

following is true:

Ex,ε[(βT (x+ ε)− β∗Tx)2] = Ex,ε[((β − β∗)Tx+ βT ε)2]

= Ex,ε[((β − β∗)Tx)2] + 2Ex,ε[(β − β∗)Tx)(βT ε)] + Ex,ε[(βT ε)2]

= ‖β − β∗‖22 + σ2
ε ‖β‖22.

(69)

It is then easy to show that the optimal linear model that minimizes the above testing error is as follows:

β∗noise =
1

1 + σ2
ε

β∗ (70)

Furthermore, the optimal testing error is:

‖β∗noise − β
∗‖22 + σ2

ε ‖β
∗
noise‖22 =

σ4
ε

(1 + σ2
ε )2
‖β∗‖22 +

σ2
ε

(1 + σ2
ε )2
‖β∗‖22

=
σ2
ε ‖β

∗‖22
1 + σ2

ε

(71)

3.4 Theorem 3 and Its Proof

Theorem 3.1 (Theorem 3 from paper, detailed version). Let the following assumptions hold:

1. Assumptions in subsection 3.1 hold;

2. The number of samples satisfies Ns ∈ Ω
(
g2 log(dx)

)
.

3. X is fixed, randomness only comes from the noise Z.

4. The columns of X satisfy N−1s ‖Xi‖22 ≤ Kx for all i, with Kx ∈ O(1).

5. Let X satisfy the property that, with high probability (over the randomness of Z), Xε has the mutual
incoherence condition for some γ ∈ (0, 1): for every i ∈ {1, ..., s/g}, for all j /∈ Si,

max
j /∈Si
‖XT

ε,jXε,Si(X
T
ε,SiXε,Si)

−1‖1 ≤ (1− γ) (72)

6. With high probability, for every Si, X
T
ε,SiXε,Si/Ns is invertible, and denote its minimum eigenvalue

as Λimin. Furthermore, define Λmin = mini∈{1,...,s/g} Λimin.

Then there exists a choice of λi for each problem i in (63), such that with high probability, the overall test
error satisfies

E
[(
W̃ 2PW 1(x+ ε)− β∗Tx

)2]
∈ O

(
1

γ2Λ2
min

σ2
ε ‖β

∗‖22
1 + σ2

ε

)
(73)
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Remark. Let us interpret the result and assumptions.

1. Condition 4. can be easily satisfied by many types of random matrices, e.g. it would be satisfied with
high probability if X’s entries are sampled independently from the standard Gaussian distribution.

2. The invertibility condition is almost trivially true, since if we fix X and only allow randomness in Z,
then the columns Xε are continuous random vectors, and must be independent from each other almost
surely. Therefore, Xε,Si will be full-rank almost surely.

3. The mutual incoherence condition is a common assumption used in the LASSO literature to ensure
basis recovery (ours is modified from the standard one, since unlike the traditional case, we have noise
in the input). The types of matrices that satisfy mutual incoherence is discussed in [3] (section 2 and 4)
and [5] (see proposition 24). For instance, if X’s entries were sampled independently from the standard
Gaussian, then with Ns ∈ Ω(g2 log(dx)), Xε must satisfy mutual incoherence with high probability in
high dimensions (over the randomness of X and Z). Note that there are some subtleties with general
iid random matrices that have finite exponential moments, as log(dx) ≤ o(N c

s ) for some c > 0 could
be needed. The general treatment on this condition is beyond the scope of our work.

4. Note that the sample complexityNs ∈ Ω(g2 log(dx)) indicates the “bare minimum” to ensure reasonable
performance of student-teacher learning. As mentioned in the previous point, more samples are always
better, e.g. if we instead pick g2 log(dx) ≤ o(N c

s ) for some small c > 0, then we could get better testing
error in the end.

Proof. The proof of this theorem follows directly from lemma 3.3. During testing, by equations (67) and
(69), we just need to compute ∥∥∥∥∥∥

s/g∑
i=1

wi − β∗
∥∥∥∥∥∥
2

2

+ σ2
ε

∥∥∥∥∥∥
s/g∑
i=1

wi

∥∥∥∥∥∥
2

2

(74)

By lemma 3.3, with high probability, for all i ∈ {1, ..., s/g}, supp(wi) ⊆ Si, therefore, the above loss can be
written as ∥∥∥∥∥∥

s/g∑
i=1

(wi − β∗i)

∥∥∥∥∥∥
2

2

+ σ2
ε

∥∥∥∥∥∥
s/g∑
i=1

wi

∥∥∥∥∥∥
2

2

(75)

Furthermore, since Si ∩ Sj = ∅ for every i 6= j, the above can be written as

s/g∑
i=1

(∥∥wi − β∗i
∥∥2
2

+ σ2
ε

∥∥wi
∥∥2
2

)
(76)

Again, by lemma 3.3, the above can be bounded with

s/g∑
i=1

(∥∥wi − β∗i
∥∥2
2

+ σ2
ε

∥∥wi
∥∥2
2

)
∈ O

(
1

γ2Λ2
min

σ2
ε ‖β

∗‖22
1 + σ2

ε

)
(77)

3.5 Main Lemmas

We denote Hthm as the intersection of the high-probability events (over the randomness of Z)
from the theorem’s assumptions. In other words, Hthm contains the events described in assumptions 5.
and 6. in the theorem’s statement.

Now, according to the assumptions of Theorem 3, Hthm is assumed to happen with high probability. In the

following, we will show that with high probability the solutions {wi}s/gi=1 will also exhibit certain desirable
properties. We will establish these results by showing that the intersection of Hthm and the event that these
properties hold has a probability very close to P(Hthm).

16



Lemma 3.2. Let the assumptions in the theorem hold. For every i ∈ {1, ..., s/g}, choose the λi in problem
(63) as follows

λi =
20

γ

√
log(dx)σ2

ε ‖β
∗i‖22Kx

Ns
. (78)

Then with probability at least P(Hthm)− 5 exp(−c log(dx)) with c ≥ 1, the following are both true: (i) event
Hthm happens; (ii) for all i, the solution wi is unique, and supp(wi) ⊆ Si is true.

Proof. We adopt the approach of the primal dual witness method in [7]. Notice that our optimization
problem (63) can be rewritten as (since Xε = X +Z)

‖Xε(w − β∗i) +Zβ∗i‖22 + λi‖w‖1. (79)

It has the same form as theirs (the only difference is that the noise term for us is −Zβ∗i , while for them
it is a noise vector that is independent from the design matrix). Hence, we may directly apply lemmas 2(a)
and 3(a) in [7]. Therefore, it suffices for us to prove that, with high probability, for every i ∈ {1, ..., s/g},
(XT

ε,SiXε,Si)
−1 exists, and the following is true:

max
j /∈Si

∣∣∣∣∣XT
ε,j

[
Xε,Si(X

T
ε,SiXε,Si)

−1hSi + P⊥Xε,Si

(
−Zβ∗i

λiNs

)]∣∣∣∣∣ < 1 (80)

where hSi is a subgradient vector for the `1 norm coming from the primal dual witness construction ([7]
equation (10)), so ‖hSi‖∞ ≤ 1. Note that (XT

ε,SiXε,Si)
−1 exists as long as Hthm happens. Additionally,

recall that P⊥Xε,Si
denotes the projection onto the orthogonal complement of the column space of Xε,Si .

Apply the triangle inequality to the term on the left of the above inequality. We obtain the upper bound

LHS of (80) ≤ max
j /∈Si
|XT

ε,jXε,Si(X
T
ε,SiXε,Si)

−1hSi |+ max
j /∈Si

∣∣∣∣∣XT
ε,jP

⊥
Xε,Si

(
Zβ∗i

λiNs

)∣∣∣∣∣ . (81)

If Hthm happens, we can apply the mutual incoherence condition and Hölder’s inequality to obtain:

max
j /∈Si
|XT

ε,jXε,Si(X
T
ε,SiXε,Si)

−1hSi | ≤ max
j /∈Si
‖XT

ε,jXε,Si(X
T
ε,SiXε,Si)

−1‖1‖hSi‖∞ ≤ 1− γ. (82)

Then, to show (80), it only remains to show

max
j /∈Si

∣∣∣∣∣XT
ε,jP

⊥
Xε,Si

(
Zβ∗i

λiNs

)∣∣∣∣∣ ≤ γ

2
(83)

holds for all i with probability at least 1− 5 exp(−c log(dx)).

First note that ∣∣∣∣∣XT
ε,jP

⊥
Xε,Si

(
Zβ∗i

λiNs

)∣∣∣∣∣ ≤
∣∣∣∣∣XT

j P
⊥
Xε,Si

(
Zβ∗i

λiNs

)∣∣∣∣∣+

∣∣∣∣∣ZTj P⊥Xε,Si

(
Zβ∗i

λiNs

)∣∣∣∣∣ . (84)

The first term on the right hand side (inside the absolute value) is zero-mean sub-Gaussian with parameter
at most (by lemma 3.8)

(1/λ2iN
2
s )σ2

ε ‖β
∗i‖22‖P

⊥
Xε,Si

Xj‖22 ≤ (1/λ2iNs)σ
2
ε ‖β

∗i‖22Kx (85)

where we recall from the theorem’s assumption that, the columns of X satisfy N−1s ‖Xi‖22 ≤ Kx for all i,
with Kx ∈ O(1). We also made use of the fact that the spectral norm of projection matrices is 1.
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Therefore, the following is true in general:

P

(∣∣∣∣∣XT
j P
⊥
Xε,Si

(
Zβ∗i

λiNs

)∣∣∣∣∣ > γ/4

)
≤ 2 exp

(
− λ2iNs

σ2
ε ‖β

∗i‖22Kx

γ2

32

)
. (86)

To ensure the inequality over all j /∈ Si, we apply the union bound and obtain:

P

(
max
j /∈Si

∣∣∣∣∣XT
j P
⊥
Xε,Si

(
Zβ∗i

λiNs

)∣∣∣∣∣ > γ/4

)
≤ 2 exp

(
− λ2iNs

σ2
ε ‖β

∗i‖22Kx

γ2

32
+ log(dx − g)

)
. (87)

Our choice of λi ensures that the above probability is upper bounded by 2 exp(−12 log(dx)).

Now we deal with the second term on the right-hand side of (84):∣∣∣∣∣ZTj P⊥Xε,Si

(
Zβ∗i

λiNs

)∣∣∣∣∣ =

∣∣∣∣ZTj P⊥Xε,Si

(∑
k∈Si Zkβ

∗
k

λiNs

)∣∣∣∣ . (88)

Note that Zj for j /∈ Si is independent from P⊥Xε,Si

(∑
k∈Si

Zkβ
∗
k

λiNs

)
(the only random terms in it are the Zk’s

with k ∈ Si). Therefore, this second term also is zero mean, and in fact has a Gaussian-type tail bound. In

particular, denoting v = P⊥Xε,Si

(∑
k∈Si

Zkβ
∗
k√

Ns

)
, we can write

ZTj P
⊥
Xε,Si

(
Zβ∗i

λiNs

)
= ZTj v =

(
1√
Nsλi

ZTj
v

‖v‖2

)
‖v‖2. (89)

Notice that due to the rotational invariance of Zj , the inner product now produces a Normal random variable
regardless of what v is. Furthermore,

P
(∣∣∣∣ZTj P⊥Xε,Si

(∑
j∈Si Zjβ

∗
j

λiNs

)∣∣∣∣ > γ

4

)
≤P
(∣∣∣∣ 1√

Nsλi
ZTj

v

‖v‖2

∣∣∣∣ > γ

4

1

2σε‖β∗i‖2

)
+ P

(
‖v‖2 ≥ 2σε‖β∗i‖2

)
.

(90)

Let’s bound the first probability. Since
ZTj v

‖v‖2
√
Nsλi

is zero-mean sub-Gaussian with parameter at most

σ2
ε /(λ

2
iNs), by lemma 3.8 and union bound we have

P
(

max
j /∈Si

∣∣∣∣ 1√
Nsλi

ZTj
v

‖v‖2

∣∣∣∣ > γ

4

1

2σε‖β∗i‖2

)
≤ 2 exp

(
− γ2

128

Nsλ
2
i

σ4
ε ‖β

∗i‖22
+ log(dx − g)

)
. (91)

With our choice of λi, we can upper bound the above probability by 2 exp(−2 log(dx)).

The second probability can be bounded with

P
(
‖v‖2 ≥ 2σε‖β∗i‖2

)
≤ P

(
‖Zβ∗‖22/Ns ≥ 2σ2

ε ‖β
∗i‖22

)
(92)

since
∥∥∥P⊥Xε,Si

(
Zβ∗i√
Ns

)∥∥∥
2
≤ ‖Zβ∗i‖2/

√
Ns. The upper bound on this probability then follows from lemma

3.6, and is at most exp(−Ns/16). With an appropriate choice of Ns ∈ Ω(g2 log(dx)) (sufficiently large
constant to multiply with g2 log(dx)), exp(−Ns/16) is dominated by exp(−2 log(dx)).

From the above bounds, we now know that, the following holds with probability at least 1−5 exp(−c′ log(dx))
with c′ ≥ 2 (in high dimensions):

max
j /∈Si

∣∣∣∣∣XT
ε,jP

⊥
Xε,Si

(
Zβ∗i

λiNs

)∣∣∣∣∣ ≤ γ/2. (93)
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To ensure that the above inequality holds for all i, we take a union bound, and end up with the above
inequality holding for all i with probability at least 1 − exp(−c log(dx)) with c ≥ 1. Combining this with
(82), with probability at least P(Hthm) − 5 exp(−c log(dx)) with c ≥ 1, the event Hthm is true, and the
following holds for all i (which completes the proof)

max
j /∈Si

∣∣∣∣∣XT
ε,j

[
Xε,Si(X

T
ε,SiXε,Si)

−1hSi + P⊥Xε,Si

(
Zβ∗i

λiNs

)]∣∣∣∣∣ < 1− γ

2
< 1. (94)

Lemma 3.3. Assume the conditions in the theorem hold. Choose

λi =
20

γ

√
log(dx)σ2

ε ‖β
∗i‖22Kx

Ns
(95)

(same as the last lemma). Then, with probability at least P(Hthm) − 5 exp(−c log(dx)) − 3 exp(− log(dx)),
the following are both true: (i) Hthm holds; (ii) for all i ∈ {1, ..., s/g}, the solution wi is unique and
supp(wi) ⊆ supp(β∗i) is true, and the following is true:

E
[
((x+ ε)Twi − xTβ∗i)2

]
≤ O

(
1

γ2Λ2
min

σ2
ε ‖β

∗i‖22
1 + σ2

ε

)
. (96)

Proof. Recall from the previous lemma that, with probability at least P(Hthm) − 5 exp(−c log(dx)) (some
c ≥ 1), Hthm holds, and for all i, wi is unique and supp(wi) ⊆ supp(β∗i). Let’s call this overall event Hgood.

Assuming Hgood, the following inequality is true, since wi is the unique solution to the problem (63):

‖Xε(w
i − β∗i) +Zβ∗i‖22/Ns + λi‖wi‖1 ≤ ‖Xε(β

∗i − β∗i) +Zβ∗i‖22/Ns + λi‖β∗i‖1 (97)

= ‖Zβ∗i‖22/Ns + λi‖β∗i‖1. (98)

By expanding the first square and cancelling out the ‖Zβ∗i‖22, we have:

‖Xε(w
i − β∗i)‖22/Ns + λi‖wi‖1 ≤ λi‖β∗i‖1 + 2β∗iTZT (X +Z)(β∗i −wi)/Ns. (99)

Now, note that ‖wi‖1 = ‖wi−β∗i +β∗i‖1 ≥ ‖β∗i‖1−‖wi−β∗‖1. Therefore, the above inequality leads to

‖Xε(w
i − β∗i)‖22/Ns ≤ λi‖wi − β∗i‖1 + 2β∗iTZT (X +Z)(β∗i −wi)/Ns. (100)

The rest of the proof relies on two main claims. We prove each of them next.

Claim 1: Assuming that Hgood happens, with constant Ĉ1 ∈ O(1), for all i,

λi‖wi − β∗i‖1 ≤
Ĉ1

γ
σε‖β∗i‖2‖wi − β∗i‖2. (101)

Proof of Claim 1: Recall that we require λi = 20
γ

√
log(dx)σ2

ε‖β∗i‖22Kx
Ns

. Therefore,

λi‖wi − β∗i‖1 =

20

γ

√
g log(dx)Kx

Ns

σε‖β∗i‖2‖wi − β∗i‖2 (102)

where we used the fact that ‖ · ‖1 ≤
√
g‖ · ‖2 for g-dimensional vectors.

By making an appropriate choice of Ns ∈ Ω(g2 log(dx)) (choosing a sufficiently large constant to multiply
with g2 log(dx)), we have that the following is true:

λi‖wi − β∗i‖1 ≤
Ĉ1

γ
σε‖β∗i‖2‖wi − β∗i‖2. (103)
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Claim 2: With probability at least P(Hthm)− exp(−c log(dx))− 3 exp(− log(dx)) and constant Ĉ2 ∈ O(1),
Hgood holds, and for all i,

2β∗iTZT (X +Z)(β∗i −wi)/Ns ≤ Ĉ2σ
2
ε ‖β

∗i‖2‖β∗i −wi‖2. (104)

Proof of Claim 2: We first note that, if Hgood happens, then :

2β∗iTZT (X +Z)(β∗i −wi)/Ns

=2β∗iTSi Z
T
Si(XSi +ZSi)(β

∗i
Si −w

i
Si)/Ns

≤2|β∗iTSi Z
T
SiXSi(β

∗i
Si −w

i
Si)|/Ns + 2|β∗iTSi Z

T
SiZSi(β

∗i
Si −w

i
Si)|/Ns.

(105)

The rest of the proof has two main steps, and the claimed inequality is a direct consequence of the results
from the two steps and the above inequality:

1. For the first term on the right of the above inequality, consider the following basic upper bound:
suppose x1,x2 ∈ Rp, and M ∈ Rp×p, then

|xT1Mx2| =|
p∑
i=1

p∑
j=1

Mi,jx1,ix2,j |

≤
p∑
i=1

p∑
j=1

|Mi,jx1,ix2,j |

≤ max
1≤i′,j′≤p

|Mi′,j′ ||
p∑
i=1

p∑
j=1

|x1,i||x2,j |

= max
1≤i′,j′≤p

|Mi′,j′ |‖x1‖1‖x2‖1.

(106)

So we have

|β∗iTSi Z
T
SiXSi(β

∗i
Si −w

i
Si)|/Ns ≤ max

1≤i′,j′≤g

∣∣∣[ZTSiXSi ]i′,j′
∣∣∣ ‖βSi‖1‖β∗i −wi‖1/Ns. (107)

But note that, by lemma 3.4, in general (not assumingHgood), with probability at least 1−exp(−2 log(dx)),

max
1≤i,j≤g

|[ZTSiXSi ]i,j |/Ns ≤ σε

√
Kx(4 log(dx) + 4 log(g))

Ns
. (108)

Therefore, if Hgood and the event of lemma 3.4 happen, we have

β∗iTZTX(β∗i −wi)/Ns

≤|β∗iTSi Z
T
SiXSi(β

∗i
Si −w

i
Si)|/Ns

≤σε‖β∗i‖1 ×

√
Kx(4 log(dx) + 4 log(g))

Ns
‖β∗i −wi‖1

≤σε‖β∗i‖2 × g

√
Kx(4 log(dx) + 4 log(g))

Ns
‖β∗i −wi‖2.

(109)

In the last inequality, we used the fact that ‖ · ‖1 ≤
√
g‖ · ‖2 for g-dimensional real vectors.

With a proper choice of Ns ∈ Ω(g2 log(dx)) (choosing a large enough constant for multiplying with
g2 log(dx)), the above inequality leads to

2β∗iTZTX(β∗i −wi)/Ns ≤ C1σε‖β∗i‖2‖β∗i −wi‖2 (110)
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for constant C1 ∈ O(1).

Taking a union bound over all i, in general, the event from lemma 3.4 is true for all i with probability
at least 1− exp(− log(dx)). Therefore, in general, the above inequality is true for all i with probability
at least P(Hthm) − 5 exp(−c log(dx)) − exp(− log(dx)), since we need Hgood and the union of events
(over all i) of lemma 3.4 to both hold.

2. Now we upper bound the second inner product term, |β∗iTSi Z
T
SiZSi(β

∗i
Si − w

i
Si

)|/Ns. By lemma 3.7,

denoting Ei = ZTSiZSi/Ns−σ
2
εIg×g, we have that in general (not assuming Hgood), for some universal

constant C2, with probability at least 1− 2 exp(−2 log(dx)),

‖Ei‖2 ≤ C2σε

√
g + 2 log(dx)

Ns
(111)

where ‖ · ‖2 represents the spectral norm for square matrices. Note that the above is true for all i with
probability at least 1 − 2 exp(− log(dx)). With appropriate choice of Ns ∈ Ω(g2 log(dx)) (sufficiently
large constant to multiply with g2 log(dx)), the above expression simplifies to ‖Ei‖2 ≤ C2σε, for some
C2 ∈ O(1).

Now, if Hgood and the union of events (over all i) from lemma 3.7 happen we may write, for all i,

|β∗iTSi Z
T
SiZSi(β

∗i
Si −w

i
Si)|/Ns = σε|β∗iTSi (β∗iSi −w

i
Si)|+ |β

∗iT
Si Ei(β

∗i
Si −w

i
Si)| (112)

≤ σε‖β∗i‖2‖β∗i −wi‖2 + C2σε‖β∗i‖2‖β∗i −wi‖2 (113)

where in the last step we have used σε|β∗iTSi (β∗iSi − w
i
Si

)| ≤ σε‖β∗i‖2‖β∗i − wi‖2 thanks to Cauchy-

Schwartz, and |β∗iTSi Ei(β
∗i
Si − w

i
Si

)| ≤ C2σε‖β∗i‖2‖β∗i − wi‖2 which comes from the following basic
inequality. Suppose we have x,y ∈ Rg, and M ∈ Rg×g being symmetric, then M has an eigen-
decomposition, and we write it as UΛUT . Then the following holds:

xTMy = xTUΛUTy

= xTUΛ1/2Λ1/2UTy (Define [Λ1/2]i,j = [Λ]
1/2
i,j )

= (Λ1/2UTx)T (Λ1/2UTy)

≤ ‖Λ1/2UTx‖2‖Λ1/2UTy‖2 (Cauchy Schwartz)

≤ ‖M‖2‖UTx‖2‖UTy‖2
≤ ‖M‖2‖x‖2‖y‖2 (Orthogonal matrices preserve `2 norm)

(114)

Using (113), the inequality below is true with constant C̃2 ∈ O(1):

2|β∗iTSi Z
T
SiZSi(β

∗i
Si −w

i
Si)|/Ns ≤ C̃2σε‖β∗i‖2‖β∗i −wi‖2. (115)

Now, let us summarize the probabilities calculated so far. From the previous point we need Hgood

and the union of events of lemma 3.4 to be true. Now we also need the union of events of lemma 3.7
to be true, so we end up with a probability at least P(Hthm) − 5 exp(−c log(dx)) − exp(− log(dx)) −
2 exp(− log(dx)).

Proof of Lemma 3.3 continued: With Claim 1 and Claim 2 in hand, we arrive at the fact that, with
constant C ∈ O(1), c ≥ 1 and probability at least P(Hthm) − 5 exp(−c log(dx)) − 3 exp(− log(dx)), Hgood

holds, and for all i ∈ {1, ..., s/g}, the following is true

‖Xε,Si(w
i
Si − β

∗i
Si)‖

2
2/Ns ≤

C

γ
σε‖β∗i‖2‖wi − β∗i‖2. (116)

All that is left is some algebraic manipulations.
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Recalling that the minimum eigenvalue of XT
ε,SiXε,Si/Ns is Λimin > 0, we have the inequality

‖Xε,Si(w
i
Si − β

∗i
Si)‖

2
2/Ns ≥ Λimin‖wi

Si − β
∗i
Si‖

2
2 ≥ Λmin‖wi

Si − β
∗i
Si‖

2
2. (117)

It follows that,

Λmin‖wi − β∗i‖22 ≤
C

γ
σε‖β∗i‖2‖wi − β∗i‖2 (118)

=⇒ ‖wi − β∗i‖2 ≤
C

γΛmin
σε‖β∗i‖2. (119)

Furthermore, by noting that σε‖wi‖2 ≤ σε‖wi−β∗i‖2+σε‖β∗i‖2, 1/
√

1 + σ2
ε ∈ O(1), and using C to absorb

O(1) constants, we arrive at

‖wi − β∗i‖2 + σε‖wi‖2 ≤
C

γΛmin

σε√
1 + σ2

ε

‖β∗i‖2. (120)

Now, consider the following basic identity:√
‖wi − β∗i‖22 + σ2

ε ‖wi‖22 ≤ ‖wi − β∗i‖2 + σε‖wi‖2. (121)

By noting that E
[
((x+ ε)Twi − xTβ∗i)2

]
= ‖wi − β∗i‖22 + σ2

ε ‖wi‖22 from section 3.3, and by combining
(120) and (121), we obtain the desired expression in the lemma.

3.6 Probability Lemmas

Lemma 3.4. Let Z’s entries be sampled from N (0, σ2
ε ) independently, and the columns of X satisfy

N−1s ‖Xi‖22 ≤ Kx for all i. Si ⊂ {1, ..., dx} is an index set of size g. Only Z is random, X is fixed.

For any t > 0, with probability at least 1− exp(−t2/2),

max
1≤i,j≤g

|[ZTSiXSi ]i,j |/Ns ≤ σε

√
Kx(t2 + 4 log(g))

Ns
. (122)

Proof. Recall that [ZSi ]:,i ∼ N (0, σ2
εIN×N ), and since XSi is deterministic, for each i, j, [ZTSiXSi ]i,j =

[ZSi ]
T
:,i[XSi ]:,j ∼ N (0, σ2

ε ‖[X]:,j‖22). Therefore, [ZTSiXSi ]i,j/(
√
NsKxσε) is zero-mean sub-Gaussian random

variable with its parameter no greater than 1 for all i, j. Now we may apply the union bound and the tail
bound for sub-Gaussian random variables (from lemma 3.8), and arrive at the following result: for any t > 0,
the following holds:

P
(

max
1≤i,j≤g

|[ZTSiXSi ]i,j |/(
√
NsKxσε) ≥

√
t2 + 2 log(g2)

)
≤2g2 exp

{
− t

2 + 2 log(g2)

2

}
=2 exp

{
− t

2

2

}
.

(123)

But clearly

P
(

max
1≤i,j≤g

|[ZTSiXSi ]i,j |/(
√
NsKxσε) ≥

√
t2 + 2 log(g2)

)
(124)

=P
(

max
1≤i,j≤g

|[ZTSiXSi ]i,j |/
√
Ns ≥ σε

√
Kx(t2 + 4 log(g))

)
. (125)

The proof is complete.
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Lemma 3.5. Let x ∼ N (0, Id×d). Then for any δ ≥ 0, the following is true:

P(‖x‖22 ≥ d+ δ) ≤
(

d

d+ δ

)−d/2
exp(−δ/2). (126)

Proof. This is a relatively standard concentration bound for the `2 norm of random Gaussian vectors. We
provide its proof for the sake of completeness.

Denote fx as the probability density function of x.

Choose λ = δ/(d+ δ). The following is true:

‖x‖22 ≥ d+ δ =⇒ exp(λ‖x‖22/2) ≥ exp(λ(d+ δ)/2). (127)

Moreover, ∫
Rd

exp(λ‖x‖22/2)fx(x)dx ≥ P(‖x‖22 ≥ d+ δ) exp(λ(d+ δ)/2). (128)

Therefore

P(‖x‖22 ≥ d+ δ) ≤ exp(−λ(d+ δ)/2)

∫
Rd

exp(λ‖x‖22/2)fx(x)dx. (129)

Explicitly computing the integral on the right-hand-side yields

P(‖x‖22 ≥ d+ δ) ≤ (1− λ)
−d/2

exp(−λ(d+ δ)/2). (130)

Substituting λ = δ/(d+ δ) into the expression completes the proof.

Corollary 3.5.1. Let x ∼ N (0, Id×d). Then for any ε ∈ (0, 1), the following is true:

P(‖x‖22 ≥ (1− ε)−1d) ≤ exp(−ε2d/4). (131)

Proof. In the result of lemma 3.5, choose δ = dε/(1− ε).

Then d+ δ = d/(1− ε), and we obtain:

P(‖x‖22 ≥ d/(1− ε)) ≤ (1− ε)−d/2 exp

(
−d

2

ε

1− ε

)
≤ exp

(
−d

2

(
ε

1− ε
+ log(1− ε)

))
. (132)

We obtain the desired expression by noting that

ε

1− ε
+ log(1− ε) ≥ ε2/2. (133)

Lemma 3.6. Let the entries of W ∈ RN×d be independent and have the random distribution N (0, σ2
ε ), and

β∗ ∈ Rd.

For any δ ∈ (0, 1), with probability at least 1− exp(−δ2N/4),

‖Wβ∗‖22/N ≤ (1− δ)−1σ2
ε ‖β

∗‖22. (134)

Proof. Note that Wβ∗/(σε‖β∗‖2) ∼ N (0, IN×N ). We now invoke the concentration inequality for standard
Gaussian random vector from corollary 3.5.1 to obtain

P
(
‖Wβ∗‖22

N
≥ (1− δ)−1σ2

ε ‖β
∗‖22
)

= P
(
‖Wβ∗‖22
σ2
ε ‖β

∗‖22
≥ (1− δ)−1N

)
≤ exp(−δ2N/4). (135)
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Lemma 3.7 (Exercise 4.7.3 in [6], specialized to iid sub-Guassian vectors). Let z be a zero-mean sub-
Gaussian random vector in Rg with independent and identically distributed entries, with each entry having
the same sub-Gaussian random distribution. Moreover, define ΣZ = E[zzT ].

Given {zi}Ni=1, then there exists universal constant C such that, for any u ≥ 0, the following is true with
probability at least 1− 2 exp(−u):∥∥∥∥∥ 1

N

N∑
i=1

ziz
T
i −ΣZ

∥∥∥∥∥
2

≤ C

(√
g + u

N
+
g + u

N

)
‖ΣZ‖2 (136)

where for matrices, ‖ · ‖2 represents the spectral norm.

Lemma 3.8. Recall that a zero-mean random variable X is sub-Gaussian if there exists some σ > 0 such
that for all t ∈ R

E [exp(tX)] ≤ exp(σ2t2/2). (137)

Moreover, X must satisfy (from [7] Appendix A)

P(|X| > x) ≤ 2 exp

(
− x2

2σ2

)
. (138)

An additional useful result is that, if X1, ..., Xn are independent and zero-mean sub-Gaussian random vari-
ables with parameters σ2

1 , ..., σ
2
n, then

∑n
i=1Xi is sub-Gaussian with parameter

∑n
i=1 σ

2
i (from [2] lemma

1.7).

3.7 Experimental Result

We carry out the following simple experiment to further support the utility of student-teacher learning over
target-based learning. We use the Lasso and LassoLars methods from the scikit-learn library to numerically
solve the LASSO problems described below.

In this experiment, we focus on student-teacher learning and target-based LASSO learning. For student-
teacher learning, we let g = 1. For target-based LASSO, we simply solve the following problem:

argmin
β∈Rdx

‖Xεβ −Xβ∗‖22 + λ‖β‖1. (139)

The exact experimental parameters are set as follows. We choose the list Dx = {500, 1000, 2000, 4000}. For
every dx ∈ Dx, we set the corresponding β∗ with β∗j = 1.0 for j ∈ {1, ..., dx/20}, and 0 everywhere else.
So for each dx, β∗ has a sparsity level s = dx/20. The sample size Ns = 5 log(dx) for every dx. The noise
variance σ2

ε = 0.1. To solve the base learning problem and the student-teacher learning problem, we run
parameter sweep over λ, and report only the best testing error out of all the λ’s chosen.

Figure 2 reports the testing error of the network trained with student-teacher loss and the target-based loss.
We also draw the optimal test error curve for comparison. The horizontal axis is dx, and the vertical axis is
the testing error. As dx increases, the testing error of the network trained with target-based LASSO diverges
very quickly to infinity, while the testing error of the network trained with the student-teacher loss stays
very close to the optimal one.
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Figure 2: The testing error of the network trained with student-teacher loss and the target-based loss. Opti-
mal testing error is also drawn for comparison. The horizontal axis dx indicates the data vector dimension,
and the vertical axis indicates the testing error of the network. At each dx, we set s = dx/20, Ns = 5 log(dx).
For student-teacher, g = 1. The noise variance σ2

ε = 0.1. We carry out parameter sweep over λ for both the
target-based and student-teacher problem, and only report the best testing error.
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