A. Detailed Description of StyleCutMix

This section provides some detailed explanations for the process of obtaining the style component inside and outside the bounding box, and the process of calculating the value of the style label coefficient λ_s.

In StyleCutMix, we define a mixed image x_m as Eq. (1).

$$x_m = T \odot g_{11} + (I - R_c - R_s + T) \odot g_{22} + (R_c - T) \odot g_{12} + (R_s - T) \odot g_{21}.$$

Before calculating the style component, it is necessary to set T as the specific value. T is a matrix that satisfies $\max(0, R_c + R_s - I) \leq T \leq \min(R_c, R_s)$. But here T is always fixed at $T = \max(0, R_c + R_s - I) = \min(R_c, R_s)$, which is because the element of R_c is always 0 or 1.

Inside the bounding box B, the elements of R_c are always 1, so $\max(0, R_c + R_s - I)$ is naturally identical to R_s, which is the same with $\min(R_c, R_s)$. Too. Inside the bounding box B, the elements of R_c are always 0, and thus $\max(0, R_c + R_s - I) = 0$ and $\min(R_c, R_s) = 0$. Therefore, both inside and outside of the box B always satisfy $T = \max(0, R_c + R_s - I) = \min(R_c, R_s)$.

Since the content component can be obtained as done in CutMix, let us consider only the style component. Inside the box B, as mentioned earlier, the elements of R_c have a value of 1, and the elements of T are r_s.

To simplify Eq. (1), let us use $x_{m, in}, g_{11, in}, g_{12, in}$ to denote the inside the box of x_m, g_{11}, g_{12}, respectively. Then Eq. (2) is established from Eq. (1):

$$x_{m, in} = r_s g_{11, in} + (1 - r_s) g_{12, in}$$

The reason that g_{21} and g_{22} disappear in the equation is because inside the box the elements of T are r_s and the elements of R_c are 1, so the coefficients of g_{21}, g_{22} in Eq. (1) become 0. Since g_{11} has the style of x_1, and g_{12} has the style of x_1 as much as the degree of style mixing γ, $x_{m, in}$ has style of x_1 with $r_s + (1 - r_s) \gamma = 1 - (1 - r_s)(1 - \gamma)$, as mentioned in the paper.

Similarly, let us use $x_{m, out}, g_{21, out}, g_{22, out}$ to denote the outside part of x_m, g_{21}, g_{22}, respectively. As mentioned earlier, the elements of T and R_c are 0, so Eq. (3) holds:

$$x_{m, out} = (1 - r_s) g_{22, out} + r_s g_{21, out}$$

Since g_{22} has no style of x_1, and g_{22} has the style of x_1 as much as $(1 - \gamma)$, so $x_{m, out}$ has style of x_1 as much as $r_s(1 - \gamma)$, as mentioned in the paper.

In summary, the style of x_1 inside the bounding box is with a ratio of $1 - (1 - r_s)(1 - \gamma)$, and the style of x_1 outside the bounding box is with $r_s(1 - \gamma)$. Therefore, λ_s, the style label coefficient of y_1, is calculated as $\lambda(1 - (1 - r_s)(1 - \gamma)) + (1 - \lambda)r_s(1 - \gamma) = \gamma \lambda + (1 - \gamma)r_s$.

B. Algorithm

Algorithm 1–2 show the pseudo-codes for learning StyleMix and StyleCutMix. In Algorithm 2, D is the style distance function defined in the paper. All of our methods have the similar pipeline: creating a mixed image using input images, obtaining the content and style label of the mixed image, and learning the model using the loss calculated by these labels. We use the cross-entropy loss.
Algorithm 2 StyleCutMix pseudo-code

for Image x_1, Target y_1 = Batch(Data) do

x_2, y_2 = randShuffle(x_1, y_1)
$bbw_1, bbw_2, bbh_1, bbh_2 = $ getBoundingBox()
$W, H = $ getWidthAndHeight(x_1)
$\lambda = (bbw_2 - bbw_1)(bbh_2 - bbh_1) / (WH)$
Sample $r_s \sim Beta(\alpha_1, \alpha_1)$
$R_s = r_s I$
$R_c = $ zeros_like(R_s)
$R_c[:i, :, bbw_1 : bbw_2, bhh_1 : bhh_2] = 1$
$T = $ max($0, R_c + R_s - I$)
if method is auto-γ then

$\gamma = tanh(D(y_1, y_2) / \delta)$

end if

$\gamma_1, \gamma_2 = $ encoder(x_1), encoder(x_2)
$\gamma_1, \gamma_2 = $ AdaIN(γ_1, γ_2), AdaIN(γ_2, γ_1)
$g_1, g_2 = $ x_1, x_2
$g_1 = \gamma(x_1) + (1 - \gamma) decoder(f_{12})$
$g_2 = \gamma(x_2) + (1 - \gamma) decoder(f_{21})$
$x_m = T \odot g_1 + (1 - R_c - R_s + T) \odot g_2 + (R_c - T) \odot g_2 + (R_s - T) \odot g_2$
$\lambda_s = \gamma + (1 - \gamma) y_s$
$y_c = \lambda y_1 + (1 - \lambda) y_2$
$y_s = \lambda y_1 + (1 - \lambda) y_2$
$y_m = r y_c + (1 - r) y_s$
output = model(x_m)
loss = Loss(output, y_m)
loss.backward
optimizer.step

end for

C. Results of FGSM Attacks on CIFAR-10

Same as in CIFAR-100, we apply FGSM attack on the CIFAR-10 validation set with $\ell_\infty \epsilon = \{1, 2, 4\} / 255$. Table 1 shows the Top-1 error rates; StyleCutMix and StyleCutMix(auto-γ) improve robustness compared to other augmentation strategies.

D. Results of ResNet50

We use ResNet50 as the base classifier instead of PyramidNet [2] to evaluate the generalization of our method. Tables 2–3 show the performance with ResNet50 on CIFAR-10/100. In CIFAR-10, StyleCutMix (auto-γ) outperforms other state-of-the-art augmentation strategies. In CIFAR-100, StyleCutMix (auto-γ) records Top1-error 0.05% lower than PuzzleMix, which may be because messy images tend to occur more frequently as the number of classes increase.

E. Results of PGD Attacks

We evaluate whether our methods improve robustness against another adversarial attack type other than FGSM. We select the PGD (Projected Gradient Descent) Attack [4] with ResNet50 on CIFAR-10/100. We apply PGD attacks on the CIFAR-10 validation set with the following settings of $\ell_\infty \epsilon = 8 / 255$, a step size of $\alpha = 2 / 255$ and the number of steps = \{4, 6, 8\}. In CIFAR-100, we use
Table 4: Top-1 error rates of multiple mixup methods on CIFAR-10 dataset when PGD Attacks are applied. The baseline is the vanilla ResNet50 model.

<table>
<thead>
<tr>
<th>Method</th>
<th>PGD (4)</th>
<th>PGD (6)</th>
<th>PGD (8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>64.36</td>
<td>72.64</td>
<td>76.63</td>
</tr>
<tr>
<td>Cutout [1]</td>
<td>70.11</td>
<td>78.84</td>
<td>82.59</td>
</tr>
<tr>
<td>CutMix [5]</td>
<td>52.03</td>
<td>58.82</td>
<td>62.13</td>
</tr>
<tr>
<td>PuzzleMix [3]</td>
<td>52.93</td>
<td>59.09</td>
<td>61.79</td>
</tr>
<tr>
<td>StyleMix</td>
<td>69.73</td>
<td>75.50</td>
<td>77.92</td>
</tr>
<tr>
<td>StyleCutMix</td>
<td>47.96</td>
<td>53.04</td>
<td>55.76</td>
</tr>
<tr>
<td>StyleCutMix(auto-γ)</td>
<td>51.97</td>
<td>60.62</td>
<td>65.39</td>
</tr>
</tbody>
</table>

Table 5: Top-1 error rates of multiple mixup methods on CIFAR-100 dataset when PGD Attacks are applied. The baseline is the vanilla ResNet-50 model.

<table>
<thead>
<tr>
<th>Method</th>
<th>PGD (4)</th>
<th>PGD (6)</th>
<th>PGD (8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>69.29</td>
<td>71.83</td>
<td>73.25</td>
</tr>
<tr>
<td>Cutout [1]</td>
<td>65.46</td>
<td>69.55</td>
<td>71.23</td>
</tr>
<tr>
<td>CutMix [5]</td>
<td>56.77</td>
<td>59.60</td>
<td>61.10</td>
</tr>
<tr>
<td>PuzzleMix [3]</td>
<td>64.93</td>
<td>68.99</td>
<td>70.76</td>
</tr>
<tr>
<td>StyleMix</td>
<td>63.68</td>
<td>66.65</td>
<td>67.89</td>
</tr>
<tr>
<td>StyleCutMix</td>
<td>54.31</td>
<td>58.67</td>
<td>60.39</td>
</tr>
<tr>
<td>StyleCutMix(auto-γ)</td>
<td>57.91</td>
<td>62.66</td>
<td>65.28</td>
</tr>
</tbody>
</table>

$\ell_\infty \epsilon = 4/255$, a step size of $\alpha = 1/255$ and the number of steps = \{4, 6, 8\}. Tables 4–5 report the top 1-errors for PGD Attacks. StyleCutMix greatly improves the robustness than other augmentation methods.

References

[5] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix: Regularization strategy to train strong classifiers with localizable features. In CVPR, 2019. 2, 3
Figure 1: A grid visualization of mixed images created by adjusting the content and style ratios \((r_c, r_s)\) in StyleMix.
Figure 2: A grid visualization of mixed images created by adjusting the content and style ratios \((r_c, r_s)\) in StyleMix.
Figure 3: Two sets of grid visualizations of mixed images created by adjusting the style ratios r_s in StyleCutMix and StyleCutMix (auto-γ).