
[Supplementary Material]
StyleMix: Separating Content and Style for Enhanced Data Augmentation

A. Detailed Description of StyleCutMix
This section provides some detailed explanations for the

process of obtaining the style component inside and outside
the bounding box, and the process of calculating the value
of the style label coefficient λs.

In StyleCutMix, we define a mixed image xm as Eq. (1).
Remind thatRs = rs1 (0 ≤ rs ≤ 1) andRc ∈ {0, 1}W×H
are defined by 1 inside the box B, otherwise 0.

xm = T� g11 + (1−Rc −Rs +T)� g22 (1)
+ (Rc −T)� g12 + (Rs −T)� g21.

Before calculating the style component, it is necessary to
set T as the specific value. T is a matrix that satisfies
max(0,Rc +Rs − 1) ≤ T ≤ min(Rc,Rs). But here T is
always fixed atT = max(0,Rc+Rs−1) = min(Rc,Rs),
which is because the element of Rc is always 0 or 1.

Inside the bounding box B, the elements of Rc are al-
ways 1, so max(0,Rc + Rs − 1) is naturally identical to
Rs, which is the same with min(Rc,Rs), too. Outside the
bounding box B, the elements of Rc are always 0, and thus
max(0,Rc + Rs − 1) = 0 and min(Rc,Rs) = 0. There-
fore, both inside and outside of the box B always satisfy
T = max(0,Rc +Rs − 1) = min(Rc,Rs).

Since the content component can be obtained as done in
CutMix, let us consider only the style component. Inside
the box B, as mentioned earlier, the elements of Rc have a
value of 1, and the elements ofT are rs. To simplify Eq. (1),
let us use xm,in, g11,in, g12,in to denote the inside the box of
xm, g11, g12, respectively. Then Eq. (2) is established from
Eq. (1):

xm,in = rsg11,in + (1− rs)g12,in (2)

The reason that g21 and g22 disappear in the equation is be-
cause inside the box the elements of T are rs and the ele-
ments of Rc are 1, so the coefficients of g21, g22 in Eq. (1)
become 0. Since g11 has the style of x1, and g12 has the
style of x1 as much as the degree of style mixing γ, xm,in

has style of x1 with rs + (1− rs)γ = 1− (1− rs)(1− γ),
as mentioned in the paper.

Similarly, let us use xm,out, g21,out, g22,out to denote the
outside part of xm, g21, g22, respectively. As mentioned ear-

Algorithm 1 StyleMix pseudo-code

for Image x1, Target y1 = Batch(Data) do
x2, y2 = randShuffle(x1, y1)
Sample rc, rs ∼ Beta(α, α)
Sample t ∼ Unif(max(0, rc + rs − 1),min(rc, rs))
f11, f22 = encoder(x1), encoder(x2)
f12, f21 = AdaIN(f11, f22), AdaIN(f22, f11)
xm = decoder(tf11 + (1 − rc − rs + t)f22 + (rc −

t)f12 + (rs − t)f21)
yc = rcy1 + (1− rc)y2
ys = rsy1 + (1− rs)y2
ym = ryc + (1− r)ys
output = model(xm)
loss = Loss(output, ym)
loss.backward()
optimizer.step()

end for

lier, the elements of T and Rc are 0, so Eq. (3) holds:

xm,out = (1− rs)g22,out + rsg21,out (3)

Since g22 has no style of x1, and g21 has the style of x1
as much as (1 − γ), so xm,out has style of x1 as much as
rs(1− γ), as mentioned in the paper.

In summary, the style of x1 inside the bounding box is
with a ratio of 1 − (1 − rs)(1 − γ), and the style of x1
outside the bounding box is with rs(1 − γ). Therefore, λs,
the style label coefficient of y1, is calculated as λ(1− (1−
rs)(1− γ)) + (1− λ)rs(1− γ) = γλ+ (1− γ)rs.

B. Algorithm

Algorithm 1–2 show the pseudo-codes for learning
StyleMix and StyleCutMix. In Algorithm 2, D is the style
distance function defined in the paper. All of our meth-
ods have the similar pipeline: creating a mixed image using
input images, obtaining the content and style label of the
mixed image, and learning the model using the loss calcu-
lated by these labels. We use the cross-entropy loss.

1



Algorithm 2 StyleCutMix pseudo-code

for Image x1, Target y1 = Batch(Data) do
x2, y2 = randShuffle(x1, y1)
bbw1, bbw2, bbh1, bbh2 = getBoundingBox()
W, H = getWidthAndHeight(x1)
λ = (bbw2 − bbw1)(bbh2 − bbh1)/(WH)
Sample rs ∼ Beta(α1, α1)
Rs = rs1
Rc = zeros like(Rs)
Rc[:, :, bbw1 : bbw2, bbh1 : bbh2] = 1
T = max(0,Rc +Rs − 1)
if method is auto-γ then

γ = tanh(D(y1, y2)/δ)
else

Sample γ ∼ Beta(α2, α2)
end if
f11, f22 = encoder(x1), encoder(x2)
f12, f21 = AdaIN(f11, f22), AdaIN(f22, f11)
g11, g22 = x1, x2
g12 = γ(x1) + (1− γ) decoder(f12)
g21 = γ(x2) + (1− γ) decoder(f21)
xm = T� g11 + (1−Rc −Rs +T)� g22 + (Rc −

T)� g12 + (Rs −T)� g21
λs = γλ+ (1− γ)rs
yc = λy1 + (1− λ)y2
ys = λsy1 + (1− λs)y2
ym = ryc + (1− r)ys
output = model(xm)
loss = Loss(output, ym)
loss.backward
optimizer.step

end for

C. Results of FGSM Attacks on CIFAR-10

Same as in CIFAR-100, we apply FGSM attack on
the CIFAR-10 validation set with `∞ ε = {1, 2, 4}/255.
Table 1 shows the Top-1 error rates; StyleCutMix and
StyleCutMix(auto-γ) improve robustness compared to other
augmentation strategies.

D. Results of ResNet50

We use ResNet50 as the base classifier instead of Pyra-
midNet [2] to evaluate the generalization of our method. Ta-
bles 2–3 show the performance with ResNet50 on CIFAR-
10/100. In CIFAR-10, StyleCutMix (auto-γ) outperforms
other state-of-the-art augmentation strategies. In CIFAR-
100, StyleCutMix (auto-γ) records Top1-error 0.05% lower
than PuzzleMix, which may be because messy images tend
to occur more frequently as the number of classes increase.

Method
FGSM (1)

Top-1
Err(%)

FGSM (2)
Top-1
Err(%)

FGSM (4)
Top-1
Err(%)

Baseline 41.75 59.60 70.18
Cutout [1] 41.61 60.44 71.28
CutMix [5] 28.28 34.45 40.61
StyleMix 26.47 34.69 42.78
StyleCutMix 25.64 32.57 40.02
StyleCutMix(auto-γ) 16.61 22.36 48.50

Table 1: Top-1 error rates of multiple mixup methods on
CIFAR-10 dataset when FGSM Attack is applied. The base-
line is the vanilla PyramidNet-200 model.

Model + Method Top-1
Err(%)

ResNet50 + Baseline 5.96
ResNet50 + Cutout [1] 4.57
ResNet50 + CutMix [5] 4.40
ResNet50 + PuzzleMix [3] 4.57

ResNet50 + StyleMix 5.83
ResNet50 + StyleCutMix 4.41
ResNet50 + StyleCutMix(auto-γ) 4.07

Table 2: Comparison with state-of-the-art mixup methods
on CIFAR-10 with ResNet50. The baseline is the vanilla
ResNet50 model.

Model + Method Top-1
Err(%)

Top-5
Err(%)

ResNet50 + Baseline 22.37 5.89
ResNet50 + Cutout [1] 23.13 6.38
ResNet50 + CutMix [5] 19.67 4.65
ResNet50 + PuzzleMix [3] 17.16 4.19

ResNet50 + StyleMix 23.28 6.56
ResNet50 + StyleCutMix 17.59 4.42
ResNet50 + StyleCutMix(auto-γ) 17.21 4.65

Table 3: Comparison with state-of-the-art mixup methods
on CIFAR-100 with ResNet50. The baseline is the vanilla
ResNet50 model.

E. Results of PGD Attacks

We evaluate whether our methods improve robustness
against another adversarial attack type other than FGSM.
We select the PGD (Projected Gradient Descent) Attack [4]
with ResNet50 on CIFAR-10/100. We apply PGD attacks
on the CIFAR-10 validation set with the following set-
tings of `∞ ε = 8/255, a step size of α = 2/255 and
the number of steps = {4, 6, 8}. In CIFAR-100, we use

2



Method
PGD (4)

Top-1
Err(%)

PGD (6)
Top-1
Err(%)

PGD (8)
Top-1
Err(%)

Baseline 64.36 72.64 76.63
Cutout [1] 70.11 78.84 82.59
CutMix [5] 52.03 58.82 62.13
PuzzleMix [3] 52.93 59.09 61.79
StyleMix 69.73 75.50 77.92
StyleCutMix 47.96 53.04 55.76
StyleCutMix(auto-γ) 51.97 60.62 65.39

Table 4: Top-1 error rates of multiple mixup methods on
CIFAR-10 dataset when PGD Attacks are applied. The
baseline is the vanilla ResNet50 model.

Method
PGD (4)

Top-1
Err(%)

PGD (6)
Top-1
Err(%)

PGD (8)
Top-1
Err(%)

Baseline 69.29 71.83 73.25
Cutout [1] 65.46 69.55 71.23
CutMix [5] 56.77 59.60 61.10
PuzzleMix [3] 64.93 68.99 70.76
StyleMix 63.68 66.65 67.89
StyleCutMix 54.31 58.67 60.39
StyleCutMix(auto-γ) 57.91 62.66 65.28

Table 5: Top-1 error rates of multiple mixup methods on
CIFAR-100 dataset when PGD Attacks are applied. The
baseline is the vanilla ResNet-50 model.

`∞ ε = 4/255, a step size of α = 1/255 and the number
of steps = {4, 6, 8}. Tables 4–5 report the top 1-errors for
PGD Attacks. StyleCutMix greatly improves the robustness
than other augmentation methods.

References
[1] Terrance DeVries and Graham W Taylor. Improved regular-

ization of convolutional neural networks with cutout. arXiv
preprint arXiv:1708.04552, 2017. 2, 3

[2] Dongyoon Han, Jiwhan Kim, and Junmo Kim. Deep pyrami-
dal residual networks. In CVPR, 2017. 2

[3] Jang-Hyun Kim, Wonho Choo, and Hyun Oh Song. Puz-
zle mix: Exploiting saliency and local statistics for optimal
mixup. In ICML, 2020. 2, 3

[4] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards deep learning
models resistant to adversarial attacks. In ICLR, 2018. 2

[5] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk
Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix: Regular-
ization strategy to train strong classifiers with localizable fea-
tures. In CVPR, 2019. 2, 3

3



!" = 6/6 !" = 5/6 !" = 4/6 !" = 3/6 !" = 2/6 !" = 1/6 !" = 0/6

! ,
=
0/
6

! ,
=
1/
6

! ,
=
2/
6

! ,
=
3/
6

! ,
=
4/
6

! ,
=
5/
6

! ,
=
6/
6

Figure 1: A grid visualization of mixed images created by adjusting the content and style ratios (rc, rs) in StyleMix.

4



!" = 6/6 !" = 5/6 !" = 4/6 !" = 3/6 !" = 2/6 !" = 1/6 !" = 0/6

! ,
=
0/
6

! ,
=
1/
6

! ,
=
2/
6

! ,
=
3/
6

! ,
=
4/
6

! ,
=
5/
6

! ,
=
6/
6

Figure 2: A grid visualization of mixed images created by adjusting the content and style ratios (rc, rs) in StyleMix.

5



CutMix StyleCutMix StyleCutMix
(auto-!) CutMix StyleCutMix StyleCutMix

(auto-!)
" #
=
1/
8

" #
=
0/
8

" #
=
2/
8

" #
=
3/
8

" #
=
4/
8

" #
=
5/
8

" #
=
6/
8

" #
=
7/
8

" #
=
8/
8

" #
=
1/
8

" #
=
0/
8

" #
=
2/
8

" #
=
3/
8

" #
=
4/
8

" #
=
5/
8

" #
=
6/
8

" #
=
7/
8

" #
=
8/
8

Figure 3: Two sets of grid visualizations of mixed images created by adjusting the style ratios rs in StyleCutMix and Style-
CutMix (auto-γ)

6


