
Transformation Driven Visual Reasoning - Supplementary Material

Xin Hong1,2 Yanyan Lan3,* Liang Pang1,2 Jiafeng Guo1,2 Xueqi Cheng1,2

1 CAS Key Laboratory of Network Data Science and Technology,
Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

2 University of Chinese Academy of Sciences, Beijing, China
3 Institute for AI Industry Research, Tsinghua University, Beijing, China

{hongxin19b, pangliang, guojiafeng, cxq}@ict.ac.cn lanyanyan@tsinghua.edu.cn

This document aims at providing additional materials to
supplement our main submission. We first show the detail
of data balancing on TRANCE in Section A. Then, we give
more details on the implementation of the baseline models
and training in Section B. Next in Section C, we describe
the test system we used for collecting results from humans.
Finally in Section D, we provide extra examples of three
settings from TRANCE, i.e. Basic, Event, and View.

A. Dataset Balance
Data balancing is an important factor to be considered

when constructing TRANCE. Several factors are balanced
in TRANCE, so that a learner is expected to reason the
transformation without utilizing the biased features such
as the length of transformation in data. Without consider-
ing the image rendering, the data generation process con-
sists of two stages, i.e. sampling an initial scene graph and
sampling a transformation sequence to transform the initial
scene graph into the final scene graph. In the following of
this section, we first introduce the factors that are balanced
in these two stages and then describe the method we use.

When sampling the initial scene graph, the attributes of
all objects and the number of visible objects are balanced.
Recall that the plane is separated into the visible area and
invisible area and only objects in the visible area appear in
the image of the initial state. The two diagrams on the top
row of Figure 1 show the statistics of these two factors. We
can see that they are strictly balanced.

When sampling the transformation sequence, we balance
four factors in total. The first factor is the length of transfor-
mation so that samples with different transformation lengths
are equal in terms of size. The statistic result of the trans-
formation length can be found in Figure 1 on the left side of
the second row. The other three factors are all about the ele-
ments of atomic transformations including the object num-
ber for object and the move type and n-gram atomic trans-

*Corresponding author.

formation for the value. The object number is directly bal-
anced over all samples and the result is shown in the middle
of the second row in Figure 1. The move type is also strictly
balanced and the statistics is shown in the right of the sec-
ond row in Figure 1. As for the n-gram atomic transforma-
tion, it should be handled carefully, since for a specific ini-
tial scene graph, the availability of different atomic transfor-
mations is different. For example, changing the color of one
object can always be successful, but changing the position
of an object with a specific direction and step may be failed
because of overlapping. Thus, the concurrence of different
atomic transformations has different probability. For ex-
ample, four atomic transformations on position will be less
possible than four atomic transformations on color exist in
one sequence. Therefore, we need to consider to balance the
value throughout the sub-sequence of atomic transforma-
tions. In the following, we will call a sub-sequence with the
length n as a n-gram atomic transformation. Table 1 shows
the statistics of this factor. For each n-gram, the number of
different options to be chosen is shown in the first row. For
example, we have 33 different values so that the options
of 1-gram are 33 and that of 2-gram is 332 = 1089 and
so on. The process of counting n-gram atomic transforma-
tions can be regarded as counting the sub-sequences using a
n-length sliding window with 1 stride on transformation se-
quences. For example, to count 2-gram atomic transforma-
tions on a 4-step transformation, we use a 2-length sliding
window with 1 stride and there will be three 2-gram atomic
transformations. The rows below the options in Table 1 are
calculated on the counting results. From the table, the stan-
dard variance is very small compared to the mean value,
which means the concurrence of different atomic transfor-
mations is well balanced. It should be note that the size of
TRANCE is 0.5 million, which is not enough to cover all
4-gram options, but the analysis of training data size in our
experiments has proved our data is sufficient for training a
deep model. In conclusion, the dataset is well balanced to
eliminate the potential bias that are not related to the target

1



small large medium sphere cube cylinder metal rubber glass green blue brown red gray yellow cyan purple
size shape material color

0

0.5M

1M

1.5M

1 2 3 4 5 6 7 8 9 10
0

10k
20k
30k
40k
50k

1 2 3 4
0

50k

100k

0 1 2 3 4 5 6 7 8 9
0

50k

100k

inner out in
0

50k
100k
150k
200k

Attribute Values
Visible Objects

Transformation Length Object Move Type

N
um

be
r

N
um

be
r

Figure 1. The statistics of balanced factors in the TRANCE dataset. Top Row: The attribute values and the visible objects which are
balanced during sampling the initial scene graphs. Bottom Row: The transformation length, object number, and move type which are
balanced when sampling transformation sequences.

1-gram 2-gram 3-gram 4-gram

options 33 1,089 35,937 1,185,921

min 38,635 697 7 0
max 38,638 708 15 3
median 38,636 703 11 0
mean 38,636 702.5 10.64 0.1075
std 0.7714 2.2854 0.7880 0.3150

Table 1. The statistics of the n-gram atomic transformations in
TRANCE.

Algorithm 1: Balanced Sampling
Input: available k options O = {o1, o2, ..., ok},

corresponding count table
N = {n1, n2, ..., nk};

Output: sampled option or;
Parameter: tolerance t = 0.1 (default);

1 nmax = max(n1, n2, ..., nk) ;
2 ci = nmax − ni + t ;
3 pi =

ci∑k
i=1 ci

;

4 or = randomly sample an option from
{o1, o2, ..., ok} with probability {p1, p2, ..., pk} ;

of transformation reasoning.
The method we used to balance all the above factors is

called balanced sampling. The basic idea of this method
is changing the probability of the sampling targets dynam-
ically according to previously generated samples. Algo-
rithm 1 shows how to sample an option given the count table
of previously generated options.

B. Implementation Details
The code for data generation is rewritten on the basis of

the CLEVR1. In terms of training, we use PyTorch [5] as

1https://github.com/facebookresearch/clevr-dataset-gen

Model Encoder Backbone Decoder Parameters

CNN− 4-layer CNN Adapted GRU 737K
CNN⊕ 4-layer CNN Adapted GRU 738K
ResNet− resnet18 Adapted GRU 11M
ResNet⊕ resnet18 Adapted GRU 11M
BCNN vgg11 bn Adapted GRU 41M
DUDA resnet18 Adapted GRU 18M

Table 2. The architectural details of different baseline models un-
der the TranceNet framework.

our deep learning framework. All of the code can be found
at our Github repository2. In the following, we introduce
the implementation of our baseline models and the training
process in detail.

Table 2 shows the architectural details of different base-
line models under the TranceNet framework. In the en-
coder part, both CNN− and CNN⊕ use a 4-layer CNN as
the backbone. The channel of four CNN layers is 16, 32,
32, 64, the kernel size is 5, 3, 3, 3, and all the strides is 2.
The encoder backbone of ResNet−, ResNet⊕, and DUDA
is ResNet-18 [1], which we directly use the implementation
given by PyTorch without pretrained parameters. As for
BCNN, we use the VGG-18 [6] implemented by PyTorch as
the backbone, which is to keep consistent with the original
paper [4]. In the decoder part, the output of the encoder is
first flattened and then encoded by a fully-connected layer to
become a 128-dimension vector. This 128-dimension vec-
tor will be sent to the adapted GRU network. In the GRU
network, the hidden size of each GRU cell is 128 and two
1-layer fully-connected layers are used to decode the object
vector and the value of each step respectively. The dimen-
sion of the object vector is 19 including 8 for the color, 3
for the size, 3 for the shape, 3 for the material, and 2 for the
position. The dimension of the value output is 33.

The optimizer we used is Adam [2] and the learning rate

2https://github.com/hughplay/TVR

2



is 0.001 in the beginning then reduced to 0.0001 after 25
epochs. The samples for Event and View is shared and the
number of samples in the training, validation, and test set
is 500,000, 10,000, and 20,000 respectively. Please note
for each sample in View, we have 3 different final views
so that the total image pairs are tripled. As for Basic, we
collect all existing 1-step samples in data, and the size of
training, validation, and test set is 125000, 2,500, and 5,000.
All models are trained with 50 epochs on the training set
and models that have the best results on the validation set
are chosen to be evaluated on the test set to get the final
results. In our experiments, images are resized to 120×160
for fast training. Furthermore, by following the common
practice on image augmentation [3], we apply a 0 ∼ 5%
spatial translation to all input image pairs during training.

During evaluation, when moving an object from the visi-
ble area into the invisible area, any directions and steps that
could cause the same effect without making objects over-
lapping are accepted. In the evaluation system, this is im-
plemented by only comparing the visible objects’ attribute
values of the two final states, i.e. the predicting final state
and the ground truth final state.

C. Human Test System

To collect the human results, we build a web-based test
system. Figure 2 shows the GUI of this system. The whole
testing process includes the following steps. First of all, a
human tester is told to be familiar with our system by trying
a few examples with guidance. After that, the tester can start
to test. During testing, for each sample, the tester should
first observe given images and the attributes of the initial
objects and then select the correct atomic transformations
arranged with a feasible order. To reduce the time usage,
we also provide the visualization of the initial objects for
testers. After completing all samples, the tester can see his
or her test result by checking the testing history.

D. More Examples from TRANCE

The remaining pages show extra examples from the three
settings of TRANCE, i.e. Basic, Event, and View. In each
sample, the initial state, the final state, and the attributes of
the initial objects are provided. In the View setting, the view
of the final state is randomly selected from Left and Right.
To make readers easy to understand the given examples, for
each example, an additional diagram is provided to visual-
ize the attributes of the initial objects. At last, we show the
reference transformation.

References
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceedings

of the IEEE conference on computer vision and pattern recog-
nition, pages 770–778, 2016. 2

[2] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In Yoshua Bengio and Yann LeCun,
editors, 3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015. 2

[3] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Im-
agenet classification with deep convolutional neural networks.
In Advances in neural information processing systems, pages
1097–1105, 2012. 3

[4] Tsung-Yu Lin, Aruni RoyChowdhury, and Subhransu Maji.
Bilinear CNN models for fine-grained visual recognition. In
Proceedings of the IEEE international conference on com-
puter vision, pages 1449–1457, 2015. 2

[5] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, An-
dreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu
Fang, Junjie Bai, and Soumith Chintala. Pytorch: An im-
perative style, high-performance deep learning library. In H.
Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E.
Fox, and R. Garnett, editors, Advances in Neural Information
Processing Systems 32, pages 8024–8035. Curran Associates,
Inc., 2019. 2

[6] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 2

3



Figure 2. Human test system.

4



Initial State (Top)
Final State (Bottom)

1

2

3

4

5

Attributes of the
Initial Objects

Visiualization of the
Initial Attributes

Reference
Transformation

x

y

right behind

visible area

invisible area

0
M

1

R

2
G3

R

4
R

5

M

6
R

7
G

8
R

9
G

x

y

right behind

visible area

invisible area

0
G

1

M

2
R

3
G

4

R5
G

6
R

7
M

8
G

9
M

x

y

right behind

visible area

invisible area

0
G

1
M

2

M

3
G

4
G

5
R

6
R

7
R

8
R

9
M

x

y

right behind

visible area

invisible area

0
G

1
M

2

M
3

G

4
R

5

M

6
G

7

G
8

M

9
R

x

y

right behind

visible area

invisible area

0
G

1

G

2
R

3

M

4

M

5
M

6
R

7

R

8

G

9
M

Figure 3. Examples from the Basic setting.

5



Initial State (Top)
Final State (Bottom)

1

2

3

4

5

Attributes of the
Initial Objects

Visiualization of the
Initial Attributes

Reference
Transformation

x

y

right behind

visible area

invisible area

0

M

1
R

2
M

3
R

4

G

5
G

6
R

7
G

8
M

9
R

x

y

right behind

visible area

invisible area

0
R

1
R

2
M

3
R

4

M

5
R

6
R

7
M

8
G

9
R

x

y

right behind

visible area

invisible area

0
G

1
R

2
M

3
G

4
G

5
M

6
R

7

R

8
G

9
R

x

y

right behind

visible area

invisible area

0
M

1
G

2

G

3
G

4
R

5
M

6
G

7
M

8
M

9
R

x

y

right behind

visible area

invisible area

0
G

1
M

2

R

3

G

4
R

5
R

6

G

7

G
8
R

9
R

Figure 4. Examples from the Event setting.

6



Initial State (Top)
Final State (Bottom)

1

2

3

4

5

Attributes of the
Initial Objects

Visiualization of the
Initial Attributes

Reference
Transformation

x

y

right behind

visible area

invisible area

0
R

1
R

2
G

3
R

4

R

5

M

6
M

7
M

8
M

9

G

x

y

right behind

visible area

invisible area

0
M

1

R
2

M

3
R

4
R

5
R

6

R

7

R

8
M

9
R

x

y

right behind

visible area

invisible area

0
G

1
G

2

M

3
G

4
R

5

R

6
M

7
G

8
M

9
R

x

y

right behind

visible area

invisible area
0
G

1

R

2
M

3

M
4
G

5

M

6
G

7
M

8
M

9

M

x

y

right behind

visible area

invisible area

0
R

1
M

2
G

3

G

4
G

5
R

6
M

7
G

8
M

9

R

Figure 5. Examples from the View setting.

7


