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Appendix A. Datasets
We evaluate the performance of our proposed model on

two distinct datasets for VLN:

• Room-to-Room (R2R) [2]: The agent is required
to navigate in photo-realistic environments (Matter-
port3D [3]) to reach a target following low-level nat-
ural language instructions. Most of the previous works
apply a panoramic action space for navigation [4],
where the agent jumps among viewpoints pre-defined
on the connectivity graph of the environment. The
dataset contains 61 scenes for training; 11 and 18
scenes for validation and testing, respectively, in un-
seen environments.

• REVERIE [13]: The agent needs to first navigate to a
point where the target object is visible, then, it needs
to identify the target object from a list of given candi-
dates. In REVERIE, the navigational instructions are
high-level while the instructions for object grounding
are very specific. The dataset has in total 4,140 target
objects in 489 categories, and each target viewpoint
has 7 objects with 50 bounding boxes in average.

Appendix B. Implementation Details
We provide the implementation details of preparing vi-

sual features (§3.31), decision making (§3.3), adaptation to
PREVALENT [5] (§3.3 & 3.5), adaptation to REVERIE
[13] (§3.3 & 3.5), critic function and reward shaping in re-
inforcement learning (§3.4).

B.1. Visual Features (§3.31)

Navigation in R2R [2] and REVERIE [13] are con-
ducted in the Matterport3D Simulator [3]. At each navi-

1Link to Section 3.3 in Main Paper.

gable viewpoint in the environment, the agent observes a
360˝ panorama, consisting of 36 single-view images at 12
headings (30˝ separation) and 3 elevation angles (˘30˝).

Scene Features In our experiments, we only consider the
scene features (grid features of the single-view images pro-
vided by ResNet-152 [6] pre-trained on Places365 [18]) at
the navigable directions as visual features to VLNœ BERT.
Each visual feature is direction-aware, which is formulated
by the concatenation of the convolutional image feature
fv,i
t P R2048 and the directional encoding di

t P R128 as:

Iv,i
t “

”

fv,i
t ;di

t

ı

(1)

The directional encoding is formed by replicating vector
pcosθit, sinθit, cosφit, sinφitq by 32 times, where θit and φit
represents the heading and elevation angles of the image
with respect to the agent’s orientation [4, 16]. Moreover, the
action features at which is fed to the state representation is
exactly the directional encoding at the selected direction dc

t ,
where c “ ast .

Object Features In REVERIE [13], the target objects
can appear at any single-view of the panorama, we extract
the object features (regional features encoded by Faster-
RCNN [14] pre-trained on Visual Genome [10] by Ander-
son et al. [1]) according to the positions of objects provided
in REVERIE [13]. The object features are position- and
direction-aware, formulated as

Io,k
t “

”

fo,k
t ;pk

tW
p;dk

t

ı

(2)

where fo,k
t P R2048 is the convolutional object features,

dk
t P R128 is the directional encoding of the single-view
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which contains the object. pk
t represents the spatial posi-

tion of the object within the image, as in MATTN [17], we
apply pk

t “
“

xtl

W , ytl

H , xbr

W , ybr

H , w¨h
W ¨H

‰

, where pxtl, ytlq and
pxbr, ybrq are the top-left and bottom-right coordinates of
the object, pw, hq and pW,Hq are the width and height of
the object and the image, respectively. The matrix W p

P

R5ˆ128 is a learnable linear projection.

B.2. Decision Making (§3.3)

In R2R [2], there are two types of decisions that an
agent infers during navigation; it either selects a naviga-
ble direction to move, or it decides to stop at the cur-
rent viewpoint. As in most of the previous work, stopping
in VLNœ BERT is implemented by adding a zero vector
vstop
t to the list of visual features at navigable directions

[4, 7, 11, 16], as

V t “ xv
1
t ,v

2
t , ...,v

n
t ,v

stop
t | vi

t P R2176y (3)

Our VLNœ BERT determines to stop by predicting the
largest attention score to the stop representation at the fi-
nal transformer layer. Otherwise, the agent will move to a
navigable direction with the largest score.

However, in REVERIE [13], we directly apply the at-
tention scores over the candidate objects for stopping. To
be specific, the visual tokens in REVERIE consists of se-
quences of scene features and object features:

xv1
t ,v

2
t , ...,v

n
t ,o

1
t ,o

2
t , ...,o

m
t | v

i
t P V t,o

k
t P Oty (4)

When the model predicts larger attention scores for at least
one of the object token than all of the scene tokens, the
agent will stop and will select the object with the largest
score as the grounded object for REF. Such formulation has
two advantages; First, it relates the object searching pro-
cess to navigation, i.e., the agent should not stop naviga-
tion if it has low confidence of localising the target object.
Second, it allows the reinforcement learning to benefit the
object grounding, since the action logits for stop is the
greatest attention scores over objects.

B.3. Adaptation to PREVALENT (§3.3 & §3.5)

As shown in Fig. 1, we adapt our VLNœ BERT to the
LXMERT-like [15] architecture in PREVALENT [5]. At
initialisation, the transformer TRM-Lang1 encodes the in-
struction U and uses the output features of the [CLS] token
to represent agent’s initial state. During navigation, the con-
catenated sequence of the previous state st´1, the encoded
language from initialisation X and the new visual obser-
vation V t will be fed to the cross-modality encoder to ob-
tain the language-aware state feature sLt´1 and the language-
aware visual features V L

t . Finally, TRM-Vis2 will process
sLt´1 and V L

t to produce a new state st and a decision pt.
Pre-training of PREVALENT [5] applies the outputs

from TRM-Lang3 for attended masked language modelling

and action prediction, but fine-tuning on R2R [2] only use
the output language features from TRM-Lang1 and rely on a
downstream network EnvDrop [16] for navigation. In con-
trast, our method does not require any downstream network,
we leverage the visual transformers TRM-Vis1 and TRM-
Vis2 to learn state-language-vision relationship for better
decision marking.

Cross-Modal Matching The cross-modal matching for
State Refinement (see Eq. 12 in §3.3) is applied to
enhance the state representation of PREVALENT-based
VLNœ BERT. Since the final transformer TRM-Vis2 only
process the state and visual features, we apply the averaged
attention scores over the visual features with respect to st
to weight the input visual tokens V t, but apply the aver-
aged attention scores over the textual features with respect
to sLt´1 to weight the input language tokens X . Results in
Table 1 show that cross-modal matching for state improves
the agent’s performance in unseen environments.

Models R2R Validation Seen R2R Validation Unseen
TL NEÓ SRÒ SPLÒ TL NEÓ SRÒ SPLÒ

w/o Matching 10.87 2.44 76.79 73.13 11.72 4.08 62.07 56.15
with Matching 11.13 2.90 72.18 67.72 12.01 3.93 62.75 56.84

Table 1. Performance of PREVALENT-based VLNœ BERT with
and without cross-modal matching for agent’s state.

B.4. Critic Function (§3.4)

We apply the A2C [12] for reinforcement learning. At
each time step, the critic, a multi-layer perceptron, predicts
an expected value from the updated state representation as:

et “ pReLUpstWE1
qqWE2 (5)

where ReLU is the Rectified Linear Unit function, WE1

and WE2 are learnable linear projections.

B.5. Reward Shaping (§3.4)

In addition to the progress rewards defined in EnvDrop
[16], we apply the normalised dynamic time warping [9] as
a part of the reward to encourage the agent to follow the
instruction to navigate. Moreover, we introduce a negative
reward to penalise the agent if it misses the target.

Progress Reward As formulated in the EnvDrop [16], we
apply the progress rewards as strong supervision signals for
directing the agent to approach the target. To be specific, let
Dt to be the distance from agent to target at time step t, and
∆Dt “ Dt ´Dt´1 to be the change of distance by action
at, the reward at each step (at‰stop) is defined as:

rD,step
t “

#

`1.0, ∆Dt ą 0.0

´1.0, otherwise
(6)
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Figure 1. Adaptation to recurrent PREVALENT. At initialisation, the entire instruction is encoded by a language transformer (TRM-Lang1),
where the output feature of the [CLS] token servers as the initial state representation of the agent. During navigation, the concatenated
sequence of state, encoded language and new visual observation are fed to the cross-modality and the single-modality encoders to obtain
the updated state and decision probabilities. The updated state and the language encoding from initialisation will be fused and applied as
input at the next time step. The green star ( ) indicates the cross-modal matching and the past decision encoding (§3.3).

When the agent decides to stop (at“stop), a final reward
is assigned depending on if the agent successfully complete
the task:

rD,final
t “

#

`2.0, Dt ă 3.0

´2.0, otherwise
(7)

Overall, the agent will receive a positive reward if it ap-
proaches the target and completes the task (by stopping
within 3 meters to the target viewpoint), while it will be
penalised with a negative reward if it moves away from the
target or stops at a wrong viewpoint.

Path Fidelity Rewards The Progress Reward encourages
the agent to approach the target, but it does not constrain the
agent to take the shortest path. As there could be multiple
routes to the target, the agent could learn to take a longer
path or even a cyclic path to maximise the total reward.
To address the problem, we apply the normalised dynamic
time warping reward [9], a measurement of the similarity
between the ground-truth path and the predicted path, to
urge the agent to follow the instruction accurately. Let Pt

be the normalised dynamic time warping [9] at time t, and
∆Pt “ Pt ´ Pt´1 to be the change of P caused by action
at, the reward for at‰stop is defined as:

rP,step
t “ ∆Pt (8)

and the reward for at“stop:

rP,final
t “

#

`2.0Pt, Dt ă 3.0

`0.0, otherwise
(9)

Moreover, as suggested by many previous works, there
exists a large discrepancy between the agent’s oracle suc-
cess rate and success rate, indicating that it does not learn
well to stop accurately. To address this issue, we introduce a
negative stopping reward rSt which will be triggered when-
ever the agent first approaches the target but then departs
from it. To be precise, if Dt´1ď1.0 and ∆Dt ą 0.0:

rSt “ ´2.0ˆp1.0´Dt´1q (10)

The normalised dynamic time warping reward rPt and
the stopping reward rSt together form the path fidelity re-
wards which can encourage the agent to navigate efficiently.
In summary, the overall reward at each step during naviga-
tion can be expressed as:

rt “

#

rD,step
t ` rP,step

t ` rSt , at‰stop

rD,final
t ` rP,final

t , at“stop
(11)

Ablation Study We perform ablation experiments on
training the OSCAR-based and the PREVALENT-based
VLNœ BERT with and without the path fidelity rewards.
As shown in Table 2, the models trained with the path fi-
delity rewards achieve higher Success Rate (SR) and lower
Trajectory Length (TL), leading to higher Success weighted
by Path Length (SPL). Despite the improvements in SR,
the gap between the Oracle Success Rate (OSR) and SR
is kept roughly the same for the PREVALENT-based model
and is reduced by about 1.45% the OSCAR-based models.
These results suggest that the path-fidelity rewards benefit
the agent to navigate more accurate and efficient. Note that,
comparing to the results that are shown in Table 1 and Table
3 of our Main Paper, such reward shaping only contributes
to a slight gain of the improvement, whereas the structure
of the recurrent BERT is much more influential.

Models R2R Validation Seen R2R Validation Unseen
TL OSR SRÒ SPLÒ TL OSR SRÒ SPLÒ

OSCAR
rD only 11.15 77.86 70.71 66.64 12.62 66.92 58.32 52.48
rD ` rP ` rS 10.79 76.79 71.11 67.23 11.86 65.86 58.71 53.41

PREVALENT
rD only 12.24 77.28 69.93 64.46 12.89 69.52 62.15 55.65
rD ` rP ` rS 11.13 78.16 72.18 67.72 12.01 70.24 62.75 56.84

Table 2. Performance of OSCAR-based and PREVALENT-based
VLNœ BERT trained with and without the path fidelity rewards.



Appendix C. Language Attention

C.1. Additional Explanation of the Averaged Lan-
guage Attention Weights (§4.1)

In Figure 3 of the Main Paper, we visualised the averaged
attention weights over all instructions in validation unseen
split during navigation. Notice that in this visualisation, we
interpolate the instruction to 80 words and the trajectory to
15 steps for each sample to compute the averaged attention
weights. Since a large portion of instructions in R2R are
less than 80 words, the last few tokens in the plot are corre-
sponding to the full stop punctuation and the [SEP] token,
which are less likely to provide valuable information to the
state and hence receive very little weight. However, for the
last step in the bottom plot, the selected visual token for
stopping could have a high correspondence to the full stop
and [SEP] which are strong indications of the end of navi-
gation.

C.2. Self-Attended Language Features with Gradi-
ent Accumulation (§4.2)

To evaluate the influence of performing different lan-
guage self-attention under the same batch size, we train
Emb-Attn, Init-Attn and Re-Attn with gradient accumulation
to achieve batch size of 16 (same as Ours) while keeping
learning rate unchanged. Comparing to the results reported
in Table 4 of the Main Paper, the performance of all the
three methods has been significantly improved. On the vali-
dation unseen split, Emb-Attn even outperforms Ours which
does not re-attend the language at each time step. How-
ever, a downside for accumulating gradient is that the train-
ing speed is significantly reduced, which is about 2.5 times
slower for accumulating 4 batches of size 4. Nevertheless,
this result suggests that agent’s performance can be further
improved by training with larger batch size, potentially in-
cluding Ours. Therefore, whether it is necessary to perform
language self-attention at each navigational step when there
is sufficient computational power remains a question worth
investigating. We will leave it as a future work.

Models R2R Validation Seen R2R Validation Unseen Accu- Speed
TL NEÓ SRÒ SPLÒ TL NEÓ SRÒ SPLÒ Grad

Emb-Attn 11.36 2.97 70.91 66.26 12.22 4.15 61.00 54.85 X 1.43
Init-Attn 12.11 3.78 64.84 59.49 12.32 4.37 58.62 52.53 X 1.33
Re-Attn 9.71 4.44 54.16 51.51 10.19 5.28 47.89 44.64 X 1.38
Ours 10.79 3.11 71.11 67.23 11.86 4.29 58.71 53.41 7 3.40

Table 3. Comparison of performing language self-attention with
gradient accumulation. We set the batch size of the first three
methods as 4 and accumulate the gradient for 4 iterations, so that
the overall batch size for each update is 16, same as Outs. Unit
for Speed is 1,000 iterations per hour (including the time spent on
evaluation).

Appendix D. Visualisation (§4.1)

As shown in Figure 2, 3 and 4, we visualise the language-
to-language and the state/vision-to-state/vision/language at-
tention weights of a sample in the validation unseen split.
As shown by the panoramas in Fig. 3 and the given in-
struction “Exit the bedroom. Walk the opposite way of
the picture hanging on the wall through the kitchen. Turn
right at the long white countertop. Stop when you get past
the two chairs.”, the agent needs to understand the com-
plex contextual clues, including different scene clues (bed-
room, kitchen), different object clues (picture, wall, coun-
tertop, chair) and various directional clues (forward, oppo-
site, left/right, stop) to complete the task.

Language Self-Attention Fig. 2 shows the language self-
attention attention weights at some selected heads at initial-
isation (t“0); different heads demonstrate different func-
tions and the attentions at different layers behave very dif-
ferently. Plot (1) and (4) show the general pattern of atten-
tions at shallow (Layer 0) and deep layers (Layer 8); words
in shallow layers tend to collect information from the en-
tire sentence, while words at deep layers have higher corre-
spondence to the adjacent words since they are semantically
more relevant. It is very interesting to see that the atten-
tion head in Plot (2) learns to attend the adjectives and the
action-related terms, which describe the objects and scenes,
for the initialised state representation ([CLS]). This head
also learns about the co-occurrence between different enti-
ties, for example, picture has higher correspondence to wall,
and countertop has higher correspondence to kitchen. In
contrast, the attention head in Plot (3) learns to extract the
important landmarks such as bedroom, picture, kitchen and
chairs. Attention head in Plot (5) learns about the [SEP]
token, which indicates the ending of the instruction. Atten-
tion weights in Plot (6) show the most frequent pattern of
the attention heads at the final (l“12-th) layer, those heads
seem to aggregate information from the punctuations in the
instruction. This implies the heads could have learnt about
breaking the sentence into multiple sub-sentences. Refer
to the idea of sub-instruction proposed by Hong et al. [8],
such attention pattern could be beneficial for matching the
current observation to a particular and the most relevant part
of the instruction.

State/Vision Step-wise Attention Fig. 3 shows the tra-
jectory of the agent starting from a bedroom, taking a se-
ries of actions and eventually stopping at the target loca-
tion. It also displays the averaged attention weights at the
final (l“12-th) layer for the state and visual tokens. Note
that the averaged attention for state/vision tokens is repre-
sentative since we apply the averaged attention weights for
visual-textual matching to state and use it as the action prob-



abilities (see Eq. 12 and Decision Making in §3.3, respec-
tively). As shown in Plot (1a-6a), the attention shifts from
the beginning of the instruction to the end, which agrees
with the agent’s navigation progress. It is also interesting
to see that at the final layer, the state token is more influen-
tial to the predicted action at the first two steps, while the
language tokens are more influential at the later steps. The
state/vision self-attention in Plot (1b-6b) reflects the action
prediction at each time step. The first row in each plot (at-
tention of state with respect to candidate actions) shows the
prediction result, we can see that the agent is very confident
in each decisions. Moreover, starting from Step 3, the infor-
mation from state and from different views are aggregated
to support choosing the correct direction.

State/Vision Layer-wise Attention To better understand
how the visual and language features are aggregated to sup-
port action prediction, we visualise the layer-wise attention
at Step 4 of the trajectory (t“4). As shown by Fig. 4 Plot (1-
12), at the first two layers, candidate views collect informa-
tion from the entire instruction. But as the signals propagate
to deeper layers (Layer 3-6), the visual tokens attend more
the middle part of the instruction, which should be more
relevant to the current observations. Interestingly, starting
from Layer 6, the visual features tend to dominate the atten-
tion, and information aggregates toward the visual token at
the predicted direction (which is the correct direction). We
can see that, at Layer 7-9, the network still has some doubts
about the candidate directions that are spatially closer to the
correct direction. But after implicitly reasoning in deeper
layers, the network becomes very confident about choosing
the correct direction.
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[SEP]
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(1) Language Attention - Layer 0, Head 1
[CLS]

exit
the

bedroom
.

walk
the

opposite
way

of
the

picture
hanging

on
the

wall
through

the
kitchen.

turn
right

at
the

long
white

counter
##top

.
stop

when
you
get

past
the
two

chairs
.

[SEP]
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(2) Language Attention - Layer 2, Head 0
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[SEP]
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(3) Language Attention - Layer 3, Head 5
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[SEP]

[C
LS

]
ex

it
th

e
be

dr
oo

m .
w

al
k

th
e

op
po

si
te

w
ay of th
e

pi
ct

ur
e

ha
ng

in
g on th
e

w
al

l
th

ro
ug

h
th

e
ki

tc
he

n .
tu

rn
rig

ht at th
e

lo
ng

w
hi

te
co

un
te

r
##

to
p .

st
op

w
he

n
yo

u
ge

t
pa

st
th

e
tw

o
ch

ai
rs .

[S
E

P
]

(4) Language Attention - Layer 8, Head 10
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[SEP]
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(5) Language Attention - Layer 8, Head 1
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[SEP]
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(6) Language Attention - Layer 11, Head 10
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Figure 2. Language self-attention weights of some selected heads at initialisation. The attention weights are normalised for each row.
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Figure 3. Visualisation of a trajectory and the averaged attention weights at the final (l“12-th) layer. The centre of each panorama is
roughly the agent’s heading direction at the corresponding time step. Distance is the agent’s distance to target in meters. The attention
weights are normalised for each row. Texts in red indicates the predicted action (corresponds to a candidate view) at each time step.
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Figure 4. Averaged state/vision-to-state/vision/language attention weights at each layer at Step 4 of the trajectory. The attention weights
are normalised for each row. Texts in red indicates the predicted action (corresponds to a candidate view) at the current time step (t“4).
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