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In this supplemental document, we describe the details
of our implementation in Section 1. We show more visu-
alizations of our models on semantic segmentation and ob-
ject detection tasks with extremely scarce data for training
in Section 2. Detailed per-category results on data-efficient
benchmark as well as on full data are showed in Section 3.

1. Implementation Details

Data Preprocessing. Following [7], we subsample the
partial frames by every 25 frames. We find pairs of frames
within each scene by computing their overlaps. In detail,
every single frame is transformed to world coordinates. We
iterate every pair of frames to calculate how many points
are overlapped by 2.5cm threshold. For example, for each
point in frame A, if we can find another point in frame B
within 2.5cm in the transformed coordinate system (world),
then those 2 points are stored as a correspondence pair.
When 2 frames have at least 30% overlaps of points, those
2 frames are saved for training. We save and use both the
xyz coordinates and rgb color for pre-training.

PointInfoNCE Loss. Here we explain the details of the
PointInfoNCE loss (Equation 3 in the main paper).

Lp = −
∑

(i,j)∈M

log
exp(f1i · f2j /τ)∑

(·,k)∈M,k∈parp(i) exp(f
1
i · f2k/τ)

M denotes the set of all the corresponding matches from
two frames. Denote the point features from two frames f1

and f2 respectively. In this formulation, we use the points
that have at least one match as negative, and non-matched
points are discarded. For a matched pair (i, j) ∈ M , point
feature f1i serves as the query and f2j serves as the positive
key. Point feature f2k where ∃(·, k) ∈ M , k ∈ parp(i) and
k 6= j are used as the set of negative keys. In practice, we
sample a subset of matched pairs from M for training.

Active Labelling. We first use our pre-trained network to
make a forward pass on all the voxels of each scene in the
training data, and save the 96-dim penultimate layer fea-
tures at each voxel. Then we back-project the features at
each voxel to the raw point cloud using nearest neighbour
search. We run a k-means clustering algorithm on the fea-
tures and xyz coordinates of the point cloud on each scene
to get k centroids, where k is the number of points we pro-
pose to annotator to label. We run k-means for 50 iterations.

Clustering Algorithm in Instance Segmentation. We
adapt the code of breadth first search from PointGroup [5].
Clustering only happens in the test time. In the test time,
we cluster on points that are shifted by learned directional
and distance vectors. Directional and distance vectors are
learned by voting-center loss in the training time. We use
3cm-ball as threshold for every point to search its neigh-
bouring points at each iteration. Within the ball, the points
are grouped into one instance when they have the same se-
mantic label. We don’t use the ScoreNet proposed in Point-
Group, so that we don’t have additional network for train-
ing. We simply average the scores of semantic prediction of
the points belonging to the same instance.

2. More Visualizations
We show more visualizations of semantic segmentation

and object detection predictions from our model trained
with extremely scarce annotations. We show the semantic
segmentation on ScanNet validation set with our model
trained on 20 labelled points per scene in Figure 2. We
also demonstrate the object detection results on ScanNet
validation set predicted by our model trained on 1 bounding
box annotated per scene in Figure 1.

3. Per-Category Results
In this section, we demonstrate detailed per-category

performance as supplement of data-efficient benchmark. In-
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Figure 1: Object Detection Results (Limited Bounding Box Annotations). With our pre-trained model as initialization
for fine-tuning, our approach generates high-quality detection predictions. Here our model is trained with 1 bounding box
annotated per scene.

cab bed chair sofa tabl door wind bkshf pic cntr desk curt fridg showr toil sink bath ofurn avg
Scratch 31.8 72.4 56.0 52.7 55.9 36.6 25.3 47.6 14.7 11.3 10.1 36.4 34.5 57.5 90.0 33.7 80.3 35.8 43.5
PointContrast 39.2 71.2 63.1 71.4 48.4 36.9 20.5 45.2 18.2 8.1 13.9 32.4 31.5 64.1 97.0 42.3 54.9 40.1 44.5
Ours 43.7 75.2 62.9 65.7 50.5 43.4 27.4 52.9 26.9 19.7 14.4 34.4 39.9 61.9 97.4 49.4 75.3 39.0 48.9

Table 1: Instance Segmentation with Limited Point Annotations (ScanNet-LA). We use mAP@0.5 as metric and demon-
strate per-category performance over 18 classes on data-efficient benchmark (200 labelled points for training per scene).

wall floor cab bed chair sofa tabl door wind bkshf pic cntr desk curt fridg showr toil sink bath ofurn avg
Scratch 81.6 96.1 57.5 79.5 88.1 82.2 67.1 55.9 54.4 76.3 24.3 59.9 52.9 67.9 39.8 55.9 86.9 58.2 82.4 42.1 65.5
PointContrast 83.0 96.0 61.1 79.5 89.5 81.9 71.6 57.1 57.0 73.0 22.6 62.0 58.8 69.1 44.4 63.6 91.5 59.4 85.2 48.5 67.8
Ours 84.0 95.9 60.2 79.0 89.5 83.8 69.6 60.2 56.7 80.6 26.1 63.9 55.6 63.5 45.1 63.7 91.9 56.9 84.7 52.6 68.2

Table 2: Semantic Segmentation with Limited Point Annotations (ScanNet-LA). We evaluate mean IoU over 20 classes
on data-efficient benchmark (200 labelled points per scene for training).
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Figure 2: Semantic Segmentation Results (ScanNet-LA). With our pre-trained model as initialization for fine-tuning,
together with an active labeling process, our approach generates high-quality semantic segmentation predictions. Here our
model is fine-tuned with 20 labeled points per scene.

cab bed chair sofa tabl door wind bkshf pic cntr desk curt fridg showr toil sink bath ofurn avg
Scratch 5.4 71.9 64.2 59.8 37.3 17.1 6.8 32.3 0.4 16.8 33.7 26.7 29.2 3.3 87.9 20.6 70.2 17.9 33.4
PointContrast 10.3 71.8 71.1 61.2 43.1 21.6 9.4 34.7 2.3 6.8 25.7 21.2 32.6 17.1 84.1 20.4 74.6 20.0 34.9
Ours 10.9 69.5 70.2 62.1 44.3 18.2 9.0 39.8 1.0 9.2 32.9 25.3 35.6 10.3 78.9 26.5 81.0 21.2 35.9

Table 3: Object Detection with Limited Bounding Box Annotations . We evaluate mAP@0.5 over 18 classes on data-
efficient benchmark (7 annotated bounding boxes for training per scene).

ceiling floor wall beam column window door chair table bookcase sofa board avg
Scratch 46.8 89.5 72.5 0.0 38.2 72.5 89.5 88.0 39.3 34.7 72.7 85.7 59.3
PointContrast 66.0 93.0 73.0 0.0 18.6 72.8 88.3 91.4 42.3 29.5 63.6 88.0 60.5
Ours 74.4 88.0 76.5 0.0 32.4 74.6 96.4 91.0 45.0 28.8 63.6 90.5 63.4

Table 4: Instance Segmentation on Stanford Area 5 Test [1]. We evaluate mAP@0.5 over 12 classes.
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ceiling floor wall beam column window door chair table bookcase sofa board clutter avg
Scratch 91.5 98.6 84.1 0.0 33.0 56.9 63.9 90.1 81.7 72.5 76.5 77.9 59.6 68.2
PointContrast 93.3 98.7 85.6 0.1 45.9 54.4 67.9 91.6 80.1 74.7 78.2 81.5 62.3 70.3
Ours 95.1 98.4 86.3 0.0 40.7 60.8 85.2 91.8 81.9 73.9 78.9 82.8 62.4 72.2

Table 5: Semantic Segmentation on Stanford Area 5 Test [1]. We evaluate mIoU over 13 classes.

bed table sofa chair toilet desk dresser night stand book bathtub avg
Scratch 47.8 19.6 48.1 54.6 60.0 6.3 15.8 27.3 5.4 32.1 31.7
PointContrast [7] 50.5 19.4 51.8 54.9 57.4 7.5 16.2 37.0 5.9 47.6 34.8
Ours 55.3 20.3 53.8 53.6 65.9 6.1 15.5 38.0 9.1 46.5 36.4

Table 6: Object Detection on SUN RGB-D [6]. We use mAP@0.5 as metric and show per-category AP@0.5 over 10 classes.

cab bed chair sofa tabl door wind bkshf pic cntr desk curt fridg showr toil sink bath ofurn avg
Scratch 49.0 70.0 87.4 66.5 71.1 47.4 39.6 53.0 30.8 32.8 30.8 41.7 48.6 60.1 99.9 68.4 75.3 52.4 56.9
PointContrast 49.4 72.1 87.2 71.7 67.0 49.0 40.7 57.8 35.6 24.0 30.2 49.9 53.0 65.2 98.3 61.7 80.5 50.8 58.0
Ours 50.8 74.1 88.7 61.4 67.2 48.0 42.0 57.0 33.8 32.5 42.9 47.4 49.5 68.9 98.2 71.3 80.5 54.7 59.4

Table 7: Instance Segmentation on ScanNetV2 [3] Validation Set. We evaluate the mean average precision with IoU
threshold of 0.5 over 18 classes.

cab bed chair sofa tabl door wind bkshf pic cntr desk curt fridg showr toil sink bath ofurn avg
Scratch 9.9 70.5 70.0 60.5 43.4 21.8 10.5 33.3 0.8 15.4 33.3 26.6 39.3 9.7 74.7 23.7 75.8 18.1 35.4
PointContrast 13.1 74.7 75.4 61.3 44.8 19.8 12.9 32.0 0.9 21.9 31.9 27.0 32.6 17.5 87.4 23.2 80.8 26.7 38.0
Ours 15.1 74.3 71.9 60.2 46.4 21.2 15.0 32.5 1.1 9.4 36.6 21.3 37.3 47.5 84.3 26.2 86.8 21.2 39.3

Table 8: Object Detection on ScanNetV2 Validation Set. We use mAP@0.5 as metric and show per-category performance
over 18 classes.

stance segmentation on ScanNet-LA (Limited Scene Anno-
tations, 200 labelled points for training) is showed in Ta-
ble 1; semantic segmentation of per-category performance
on ScanNet-LA is showed in Table 2; object detection on
Limited Bounding Boxes Annotations is showed in Table 3.

We further show the detailed per-category performance
as supplement of Table. 6 in the main paper on full data. In-
stance segmentation and semantic segmentation results on
S3DIS are showed in Table 4 and Table 5; object detection
on SUN-RGBD result is showed in Table 6; instance seg-
mentation and object detection on ScanNet validation set
are showed in Table 7 and Table 8.

4. Different Backbones.

We use Sparse Residual U-Net (SR-UNet-34, also used
in [2]) as backbone architecture. 3D-MPA also uses a
Sparse Residual U-Net backbone, and the performance gap
is due to the additional head modules (e.g., Proposal Con-
solidation) which is orthogonal to our pre-training method.
To show our algorithm is generic and agnostic to the specific
backbone, we perform experiments with different back-
bones, including SR-UNet-18A and PointNet++. Models
pre-trained with our method yield significant better results;
see Tab. 9.

Task Dataset Backone mAP@0.5
scratch ins S3DIS SR-UNet-18A 58.6

ours (pre-trained) ins S3DIS SR-UNet-18A 62.8
scratch det ScanNet PointNet++ 33.5

ours (pre-trained) det ScanNet PointNet++ 39.2

Table 9: Pre-training with different backbones; 100% of
available train data is used; we would expect larger deltas
with smaller train set.

5. ScanNet Benchmark

We report validation results to directly compare with
PointContrast which also evaluates on the val set. Addition-
ally, we submitted our model to the ScanNet Benchmark
(test set); see Tab. 10. Our method significantly outperforms
3D-MPA, despite not leveraging the special 3D-MPA pro-
posal module.

AP AP@50 AP@25
3D-MPA [4] 35.5 61.1 73.7

ours (pre-trained) 40.5 64.8 79.1

Table 10: ScanNet test set: similar to S3DIS, we outper-
form 3D-MPA.
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