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In this supplemental document, we describe the details
of our implementation in Section 1. We show more visu-
alizations of our models on semantic segmentation and ob-
ject detection tasks with extremely scarce data for training
in Section 2. Detailed per-category results on data-efficient
benchmark as well as on full data are showed in Section 3.

1. Implementation Details

Data Preprocessing. Following [7], we subsample the
partial frames by every 25 frames. We find pairs of frames
within each scene by computing their overlaps. In detail,
every single frame is transformed to world coordinates. We
iterate every pair of frames to calculate how many points
are overlapped by 2.5cm threshold. For example, for each
point in frame A, if we can find another point in frame B
within 2.5cm in the transformed coordinate system (world),
then those 2 points are stored as a correspondence pair.
When 2 frames have at least 30% overlaps of points, those
2 frames are saved for training. We save and use both the
xyz coordinates and rgb color for pre-training.

PointInfoNCE Loss. Here we explain the details of the
PointInfoNCE loss (Equation 3 in the main paper).
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M denotes the set of all the corresponding matches from
two frames. Denote the point features from two frames f*
and f* respectively. In this formulation, we use the points
that have at least one match as negative, and non-matched
points are discarded. For a matched pair (¢, j) € M, point
feature fg serves as the query and f? serves as the positive
key. Point feature f; where 3(, k) € M, k € par,(i) and
k # j are used as the set of negative keys. In practice, we
sample a subset of matched pairs from M for training.
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Active Labelling. We first use our pre-trained network to
make a forward pass on all the voxels of each scene in the
training data, and save the 96-dim penultimate layer fea-
tures at each voxel. Then we back-project the features at
each voxel to the raw point cloud using nearest neighbour
search. We run a k-means clustering algorithm on the fea-
tures and xyz coordinates of the point cloud on each scene
to get k centroids, where k is the number of points we pro-
pose to annotator to label. We run k-means for 50 iterations.

Clustering Algorithm in Instance Segmentation. We
adapt the code of breadth first search from PointGroup [5].
Clustering only happens in the test time. In the test time,
we cluster on points that are shifted by learned directional
and distance vectors. Directional and distance vectors are
learned by voting-center loss in the training time. We use
3cm-ball as threshold for every point to search its neigh-
bouring points at each iteration. Within the ball, the points
are grouped into one instance when they have the same se-
mantic label. We don’t use the ScoreNet proposed in Point-
Group, so that we don’t have additional network for train-
ing. We simply average the scores of semantic prediction of
the points belonging to the same instance.

2. More Visualizations

We show more visualizations of semantic segmentation
and object detection predictions from our model trained
with extremely scarce annotations. We show the semantic
segmentation on ScanNet validation set with our model
trained on 20 labelled points per scene in Figure 2. We
also demonstrate the object detection results on ScanNet
validation set predicted by our model trained on 1 bounding
box annotated per scene in Figure 1.

3. Per-Category Results

In this section, we demonstrate detailed per-category
performance as supplement of data-efficient benchmark. In-



Figure 1: Object Detection Results (Limited Bounding Box Annotations). With our pre-trained model as initialization
for fine-tuning, our approach generates high-quality detection predictions. Here our model is trained with 1 bounding box
annotated per scene.

cab bed chair sofa tabl door wind bkshf pic cntr desk curt fridg showr toil sink bath ofurn avg
Scratch 31.8 724 560 527 559 366 253 476 147 113 101 364 345 575 90.0 337 803 358 435
PointContrast | 39.2 712 63.1 714 484 369 205 452 182 81 139 324 315 641 970 423 549 40.1 445
Ours 437 752 629 657 505 434 274 529 269 19.7 144 344 399 619 974 494 753 390 489

Table 1: Instance Segmentation with Limited Point Annotations (ScanNet-LLA). We use mAP@0.5 as metric and demon-
strate per-category performance over 18 classes on data-efficient benchmark (200 labelled points for training per scene).

wall floor cab bed chair sofa tabl door wind bkshf pic cntr desk curt fridg showr toil sink bath ofurn || avg
Scratch 816 96.1 575 795 881 822 671 559 544 763 243 599 529 679 398 559 869 582 824 421 | 655
PointContrast | 83.0 96.0 61.1 79.5 895 819 71.6 571 570 730 226 620 588 69.1 444 63.6 915 594 852 485 || 67.8
Ours 84.0 959 602 790 895 838 696 602 567 806 261 639 556 635 451 637 919 569 847 52.6 || 68.2

Table 2: Semantic Segmentation with Limited Point Annotations (ScanNet-LLA). We evaluate mean IoU over 20 classes
on data-efficient benchmark (200 labelled points per scene for training).



Figure 2: Semantic Segmentation Results (ScanNet-LA). With our pre-trained model as initialization for fine-tuning,
together with an active labeling process, our approach generates high-quality semantic segmentation predictions. Here our
model is fine-tuned with 20 labeled points per scene.

cab bed chair sofa tabl door wind bkshf pic cntr desk curt fridg showr toil sink bath ofurn | avg
Scratch 54 719 642 598 373 171 6.8 323 04 168 33.7 267 292 33 879 206 702 179 | 334
PointContrast | 10.3 71.8 711 612 431 21.6 94 347 23 68 257 212 326 171 841 204 746 20.0 | 349
Ours 109 695 702 621 443 182 9.0 398 10 92 329 253 356 103 789 26,5 810 212 || 359

Table 3: Object Detection with Limited Bounding Box Annotations . We evaluate mAP@0.5 over 18 classes on data-
efficient benchmark (7 annotated bounding boxes for training per scene).

ceiling floor wall beam column window door chair table bookcase sofa board || avg
Scratch 46.8 895 725 0.0 38.2 72.5 89.5 88.0 393 34.7 727  85.7 || 59.3
PointContrast | 66.0  93.0 73.0 0.0 18.6 72.8 883 914 423 29.5 63.6 88.0 || 60.5
Ours 744 88.0 765 0.0 324 74.6 964 91.0 45.0 28.8 63.6 90.5 || 63.4

Table 4: Instance Segmentation on Stanford Area 5 Test [1]. We evaluate mAP@0.5 over 12 classes.



ceiling floor wall beam column window door chair table bookcase sofa board clutter || avg

Scratch 91.5 98.6 84.1 0.0 33.0 56.9 639 90.1 81.7 72.5 76.5 779 59.6 68.2
PointContrast 93.3 98.7 856 0.1 459 54.4 679 91.6 80.1 74.7 782 815 62.3 70.3
Ours 95.1 984 863 0.0 40.7 60.8 852 91.8 819 73.9 789 828 62.4 72.2

Table 5: Semantic Segmentation on Stanford Area 5 Test [1]. We evaluate mIoU over 13 classes.

bed table sofa chair toilet desk dresser nightstand book bathtub || avg

Scratch 478 196 48.1 54.6 60.0 6.3 15.8 27.3 54 32.1 31.7
PointContrast [7] | 50.5 194 51.8 549 574 1.5 16.2 37.0 5.9 47.6 34.8
Ours 553 203 538 536 659 6.1 15.5 38.0 9.1 46.5 36.4

Table 6: Object Detection on SUN RGB-D [6]. We use mAP@0.5 as metric and show per-category AP@0.5 over 10 classes.

cab bed chair sofa tabl door wind bkshf pic cntr desk curt fridg showr toil sink bath ofurn || avg
Scratch 49.0 700 874 665 71.1 474 396 530 30.8 328 308 41.7 486 60.1 999 684 753 524 | 569
PointContrast | 49.4 72.1 872 71.7 67.0 49.0 407 57.8 356 240 302 499 530 652 983 61.7 805 50.8 || 58.0
Ours 508 741 88.7 614 672 480 420 570 338 325 429 474 495 689 982 713 80.5 547 || 594

Table 7: Instance Segmentation on ScanNetV2 [
threshold of 0.5 over 18 classes.

] Validation Set. We evaluate the mean average precision with IoU

cab bed chair sofa tabl door wind bkshf pic cntr desk curt fridg showr toil sink bath ofurn | avg
Scratch 99 705 700 605 434 218 105 333 08 154 333 266 393 97 747 237 758 181 || 354
PointContrast | 13.1 74.7 754 613 448 198 129 320 09 219 319 270 326 175 874 232 80.8 26.7 | 38.0
Ours 151 743 719 602 464 212 150 325 11 94 366 213 373 475 843 262 868 212 || 39.3

Table 8: Object Detection on ScanNetV2 Validation Set. We use mAP@0.5 as metric and show per-category performance

over 18 classes.

stance segmentation on ScanNet-LA (Limited Scene Anno-
tations, 200 labelled points for training) is showed in Ta-
ble 1; semantic segmentation of per-category performance
on ScanNet-LA is showed in Table 2; object detection on
Limited Bounding Boxes Annotations is showed in Table 3.

We further show the detailed per-category performance
as supplement of Table. 6 in the main paper on full data. In-
stance segmentation and semantic segmentation results on
S3DIS are showed in Table 4 and Table 5; object detection
on SUN-RGBD result is showed in Table 6; instance seg-
mentation and object detection on ScanNet validation set
are showed in Table 7 and Table 8.

4. Different Backbones.

We use Sparse Residual U-Net (SR-UNet-34, also used
in [2]) as backbone architecture. 3D-MPA also uses a
Sparse Residual U-Net backbone, and the performance gap
is due to the additional head modules (e.g., Proposal Con-
solidation) which is orthogonal to our pre-training method.
To show our algorithm is generic and agnostic to the specific
backbone, we perform experiments with different back-
bones, including SR-UNet-18A and PointNet++. Models
pre-trained with our method yield significant better results;
see Tab. 9.

Task | Dataset Backone mAP@0.5
scratch ins S3DIS SR-UNet-18A 58.6
ours (pre-trained) ins S3DIS SR-UNet-18A 62.8
scratch det ScanNet PointNet++ 335
ours (pre-trained) det ScanNet PointNet++ 39.2

Table 9: Pre-training with different backbones; 100% of
available train data is used; we would expect larger deltas
with smaller train set.

5. ScanNet Benchmark

We report validation results to directly compare with
PointContrast which also evaluates on the val set. Addition-
ally, we submitted our model to the ScanNet Benchmark
(test set); see Tab. 10. Our method significantly outperforms
3D-MPA, despite not leveraging the special 3D-MPA pro-
posal module.

AP | AP@50 | AP@25
3D-MPA [4] 35.5 61.1 73.7
ours (pre-trained) | 40.5 64.8 79.1

Table 10: ScanNet test set: similar to S3DIS, we outper-
form 3D-MPA.
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