—— error
—e— runtime] | ,,

AGE( x 107)

5 0
8 10 100 150 200 250 300

AGE( x 107)

0
0 1 2 3 4 5 6
#iteration

Figure 10. Parameter setting analysis. We test extensive settings of
the three parameters in our framework on the FAUST dataset, in-
cluding the number of the scales L, the first k eigenvectors, eigen-
values used and the iteration times, where each case with one pa-
rameter varied and the other remaining the same. The correspond-
ing average geodesic errors and average runtime are shown in each
subfigure.

A. Proof of Remark 4.1

As we know, since the tight wavelet frame has G(\) =
Y02 (sA) = LA € [0, Amax), we get D g%(sA) = L,
where I is an identity matrix. According to (6), i.e. If we let

Cg(SAM)q)j\_/l = g(SAN)(I)j\_fPTa VS,

from the the orthogonality of the eigenvectors of the LBO
@L ® ¢ = I, where I is an identity matrix, we have
Cy(sApm) = g(sAN)tI’X/PTtI’M,Vs
Cy”(sArm) = g(sAn) P PT @ pg(sAu), Vs,

Y Cg(shm) = D g(sAn)DLPT B pqg(sA M),
CD> g% (shm) =Y g(sAN)BLP D aig(sAn).
We finally get

C= Z g(sAN)CDj(/PT@Mg(sAM).

B. Additional materials

Parameter analysis. We intend to find the relative opti-
mal settings of three important parameters in our framework
via extensive experiments, containing the discrete scales
L + 1, iteration times and the first k& eigenvalues and eigen-
vectors used. All matching results under various parame-
ter settings are detailedly shown in Figure 10. We can find
that the performance improvements become less sensitive
to the increase of L if L + 1 > 4. A similar occasion also
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Figure 11. Demonstration of partial shape correspondence. Start-
ing with a noisy functional map, we alternately optimize the func-
tional maps and the pointwise maps. The pointwise maps are vi-
sualized by color transfer. The functional map matrix C has a
slanted-diagonal structure for partial shape correspondence.

happens to k¥ when & > 100. However, as opposed to the
non-significant improvement of the performance, the com-
puting time has increased dramatically when & continuously
increases. Thus, to balance the performance and the compu-
tation efficiency well, we generally set k = 100 and L = 5
in the following experiments. Remarkably, Figure 10 also
shows that our method tends to be stable within three or four
iterations. This allows us to generally take 3 iterations in all
following experiments.

Details on partial shape correspondence. The core
idea is the spectral manifold wavelets (SMWs) inheriting
the isometric invariance of the Laplace-Beltrami eigenfunc-
tions. However, on partial shapes, this invariance has been
broken down, as the removal of shape parts changes the
Laplace-Beltrami eigenfunctions. To recover the partial
isometries, we truncate the Laplace-Beltrami eigenfunc-
tions with different sizes, in order to enforce the expectation
of a slanted diagonal by allowing rectangular C. This tech-
nique is feasible, since the PFM [29] has shown the func-
tional map has a slanted diagonal structure proportional to
the surface area. A demonstration of partial shape corre-
spondence of our method is shown in Figure 11. We will
release the implementation of our method upon publication.
For more details about how to truncate the Laplace-Beltrami
eigenfunctions in partial shape correspondence, please refer
to the PFM [29] and ZoomOut [19].



