
A. Implementation Detail
A.1. Hyperparameters

As mentioned in section 4, our hyperparameters are al-
most identical to that of MixMatch [2] and FixMatch [26].
We use the same network architecture and similar hyperpa-
rameters as FixMatch for CIFAR-10, SVHN, and CIFAR-
100 (WRN 28-8). We conducted ablation study on WRN
28-2 with hyperparameters similar to that of MixMatch for
simplicity. We also evaluated SimPLE on Mini-ImageNet
with WRN 28-2 and ResNet 18. We use the same α (beta
distribution parameter for mix-up [35]) and T (temperature
for sharpening) across all experiments. Notice that only
MixMatch and MixMatch Enhanced use mix-up.

The full detail of our hyperparameters choices can be
found in table 7 and 8. Our transfer experiment configura-
tions are in table 9.

CIFAR-10 SVHN CIFAR-100
τc 0.95
τs 0.9
λU 75 250 150
λP 75 250 150
lr 0.03
K 7 4
T 0.5
α 0.75

weight decay 0.0005 0.001
batch size 64

EMA decay 0.999
backbone WRN 28-2 WRN 28-8
optimizer SGD
Nesterov True

momentum 0.9
lr scheduler cosine decay
lr decay rate 7π / 16

Table 7: Hyperparameters for CIFAR-10, SVHN, and
CIFAR-100 (with WRN 28-8).

A.2. Optimization

For CIFAR-10, SVHN, and CIFAR-100 (WRN 28-8),
we use SGD with Nesterov momentum set to 0.9. We also
use cosine learning rate decay [18] with a decay rate of 7π

16
following FixMatch. For CIFAR-100 (WRN 28-2), Mini-
ImageNet, and transfer experiments, we use AdamW [20]
without learning rate scheduling follows that of MixMatch.
Details are available in table 7, 8 and 9.

A.3. Augmentations

Our augmentations are implemented on GPU with Ko-
rnia [24]. In table 10, we list the transformations used by

CIFAR-100 Mini-ImageNet
τc 0.95
τs 0.9
λU 150 300
λP 150 300
lr 0.002
K 2 7
T 0.5
α 0.75

weight decay 0.04 0.02
batch size 64 16

EMA decay 0.999
backbone WRN 28-2 WRN 28-2 ResNet 18
optimizer AdamW

Table 8: Hyperparameters for CIFAR-100 (WRN 28-2) and
Mini-ImageNet.

DN-R to M-IN IN-1K to DN-R
τc 0.95
τs 0.9
λU 300
λP 300

feature lr 0.0002 0.00002
classifier lr 0.002

K 2
T 0.5
α 0.75

weight decay 0.02
batch size 16

EMA decay 0.999
backbone WRN 28-2 ResNet 50
optimizer AdamW

Table 9: Hyperparameters for Transfer: DomainNet-Real to
Mini-ImageNet (DN-R to M-IN) and Transfer: ImageNet-
1K to DomainNet-Real (IN-1K to DN-R) experiments.

the fixed augmentations of table 4 and 5. For RandAug-
ment [6], we follows the exact same settings as FixMatch
[26]. Note that we only reported the changed augmentation
parameters while the omitted values are the same as the de-
fault parameters in Kornia [24].

B. Further Analysis on Pair Loss

B.1. Analysis on Confidence Threshold

Theorem 1 ∀p, q ∈ ∆N , if ϕτc (max (p)) ·
ϕτs (fsim (p, q)) > 0, then max (q) > cos(cos−1(

√
τc) +

cos−1(τs))
2.



Transformation Description Parameter
Random Horizontal Flip Horizontally flip an image randomly with a

given probability p
p = 0.5

Random Resized Crop Random crop on given size and resizing the
cropped patch to another

scale = (0.8, 1), ratio = (1, 1)

Random 2D GaussianBlur Creates an Gaussian filter for image blurring.
The blurring is randomly applied with prob-
ability p

p = 0.5, kernel size = (3, 3), sigma =
(1.5, 1.5)

Color Jitter Randomly change the brightness, contrast,
saturation, and hue of given images

contrast = (0.75, 1.5)

Random Erasing Erases a randomly selected rectangle for
each image in the batch, putting the value to
zero

p = 0.1

Random Affine Random affine transformation of the image
keeping center invariant

degrees = (−25, 25), translate = (0.2, 0.2),
scale = (0.8, 1.2), shear = (−8, 8)

Table 10: Augmentation details. Applied in order. Descriptions are from [24].

Since ϕτc (max (p)) · ϕτs (fsim (p, q)) > 0, we have:{
max (p) > τc

fsim (p, q) > τs

Denote j = arg maxi pi, i.e., the confidence of p is at-
tained at the j-th coordinate, pj = max(p).

Denote ej ∈ ∆n as the elementary vector with the j-th
element to be 1 and all other elements to be 0.

In the square root probability space, we have:{√
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B.2. More on Pair Loss

In this section, we provide additional information to
two existing ablation studies in table 6 on CIFAR-100, to

demonstrate the effectiveness of Pair Loss in encouraging
more unlabeled samples to have accurate and high con-
fidence predictions. Specifically, we compare the perfor-
mance of the SimPLE algorithm with and without the Pair
Loss enabled in the following measurements: 1) the per-
centage of unlabeled samples with high confidence pseudo
labels; 2) the percentage of unlabeled sample pairs that pass
both confidence and similarity thresholds; 3) the percent-
age of false-positive unlabeled sample pairs that pass both
confidence and similarity thresholds but are in different cat-
egories.

Figure 4: Ratio of pairs pass both confidence and similarity
thresholds. The green line is SimPLE and the grey line is
SimPLE without Pair Loss

From figure 4, the ratio of pairs that pass both the con-
fidence threshold and similarity threshold is increased by
16.67%, with a consistently nearly 0% false positive rate,
which indicates that Pair Loss encourages the model to
make more consistent and similar predictions for unlabeled
samples from the same class.



Figure 5: Ratio of high confidence prediction. The green
line is SimPLE and the grey line is SimPLE without Pair
Loss

As shown in figure 5, with Pair Loss, the percentage of
unlabeled sample with high confidence labels is increased
by 7.5%, and the prediction accuracy is increased by 2% as
shown in table 6. These two results indicate that Pair Loss
encourages the model to make high confidence and accu-
rate predictions on more unlabeled samples, which follows
our expectation that Pair Loss aligns samples with lower
confidence pseudo labels to their similar high confidence
counterparts during the training and improves the predic-
tion accuracy.


