
Appendix

A. Details of the Data Collection

Our dataset is reconstructed from 2D aerial images us-
ing the well-established structure-from-motion technique,
which recovers the camera extrinsic parameters for each
image. The byproduct orthomosaics are only used for vi-
sualization purposes. The data are validated using GNSS
RTK manual surveying carried out by professional opera-
tors. The final horizontal and vertical RMSEs are ±50mm
and ±75mm, respectively. As a comparison, the position-
ing accuracy of LiDAR point clouds is around 5 to 10 cm,
depending on the equipment quality, flying configuration,
post-processing, etc. [69]. We use Sensefly Soda 3D to
capture the aerial images. The detailed specification of the
camera can be found in Table 7. The 2D aerial images are
filmed from both nadir and oblique perspectives, therefore
the points on vertical surfaces are well captured. The res-
olution of our data depends on the number of input images
and 3D reconstruction settings. Normally, photogrammet-
ric point clouds are very dense from the process of dense
image matching and so need to be subsampled. In our case,
all points are subsampled at 2.5 cm, which is denser than
most LiDAR data such as DALES [56].

Specification
Sensor size 1 inch
RGB Lens F/2.8-11, 10.6 mm (35 mm equivalent: 29 mm)

RGB Resolution 5,472 x 3,648 px (3:2)
Exposure compensation ±2.0 (1/3 increments)

Shutter Global Shutter 1/30 – 1/2000s
White balance Auto, sunny, cloudy, shady

ISO range 125-6400
RGB FOV Total FOV: 154°, 64° optical, 90° mechanical

GNSS RTK/PPK

Table 7: Detailed specifications of the camera used in our
survey.

B. Details of the Data Annotation

We use CloudCompare to label all the points in pure 3D.
There are no unassigned points discarded in the process.
To ensure the annotation quality, all annotations have been
manually cross-checked. We notice that the instance anno-
tation would be a meaningful addition to our dataset. How-
ever, due to the tremendous labeling effort of point-wise in-
stance labels, we leave the integration of instance labels for
future exploration.

We initially labelled the point cloud as highly fine-
grained 31 categories, including benches, bollards, road
signs, traffic lights, etc. Considering the scarcity of data
points in certain categories, we merged some similar cate-
gories together. The initial label, merged label, and detailed
mapping will be released along with the dataset.

C. Visualization of the Dataset
As mentioned in Section 4, the whole urban-scale point

clouds have been divided into several non-overlap tiles sim-
ilar to DALES [56]. To have an intuitive and clear under-
standing of the data, we visualize the tiles in Birmingham
and Cambridge in Figure 5 and Figure 6, respectively. In
addition, we also show some zoomed-in urban scenes from
the York data in Figure 7.

D. Additional Quantitative Results
D.1. Pre-training on pretext task

Recently, a handful of works [44, 57, 61] have started to
design pretext tasks to achieve network pre-training based
on the self-supervised learning framework. To further ver-
ify the effects of this training strategy on our urban-scale
point clouds dataset, we conducted several groups of exper-
iments on our SensatUrban dataset. Specifically, we evalu-
ate the performance of two pretraining schemes: occlusion
completion [57] and context prediction [44], based on three
baseline networks, including PointNet [37], PCN [66], and
DGCNN [58]. The detailed experimental results are shown
in Table 8.

From the results in Table we can see that, although the
baseline networks are only pre-trained on the object-level
point clouds, the fine-tuning model can still achieve a cer-
tain performance improvement on our dataset. In particu-
lar, the performance of several minority categories, such as
rail and bridge, has a significant performance improvement
(up to nearly 10%), primary because the pre-trained models
are less prone to overfitting to the majority categories, com-
pared to directly training from scratch. This further demon-
strates the feasibility of the pre-training strategy. However,
the existing pre-training paradigm [57, 44] are still limited
to object-level point clouds, and it is non-trivial to be ex-
tended to large-scale point clouds. To this end, we release
our unlabeled York point clouds, encouraging more studies
conducted in this research area.

E. Qualitative Results
We also show the corresponding qualitative results

achieved by several baselines on the test set of our Sensat-
Urban in Figure 8. The detailed quantitative results can be
found in Section 5.2.

F. Video Illustration
We provide an anonymous video illustrating our Sensat-

Urban dataset, which can be viewed at https://youtu.
be/z84oGyEo-bs.

https://youtu.be/z84oGyEo-bs
https://youtu.be/z84oGyEo-bs
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PointNet-Rand [37] 86.29 53.33 45.10 80.05 93.98 87.05 23.05 19.52 41.80 3.38 43.47 24.20 63.43 26.86 0.00 79.53
PointNet-Jigsaw [44] 87.38 56.97 47.90 83.36 94.72 88.48 22.87 30.19 47.43 15.62 44.49 22.91 64.14 30.33 0.00 77.88
PointNet-OcCo [57] 87.87 56.14 48.50 83.76 94.81 89.24 23.29 33.38 48.04 15.84 45.38 24.99 65.00 27.13 0.00 79.58

PCN-Rand [66] 86.79 57.66 47.91 82.61 94.82 89.04 26.66 21.96 34.96 28.39 43.32 27.13 62.97 30.87 0.00 80.06
PCN-Jigsaw [44] 87.32 57.01 48.44 83.20 94.79 89.25 25.89 19.69 40.90 28.52 43.46 24.78 63.08 31.74 0.00 84.42
PCN-OcCo [57] 86.90 58.15 48.54 81.64 94.37 88.21 25.43 31.54 39.39 22.02 45.47 27.60 65.33 32.07 0.00 77.99

DGCNN-Rand [58] 87.54 60.27 51.96 83.12 95.43 89.58 31.84 35.49 45.11 38.57 45.66 32.97 64.88 30.48 0.00 82.34
DGCNN-Jigsaw [44] 88.65 60.80 53.01 83.95 95.92 89.85 30.05 43.59 46.40 35.28 49.60 31.46 69.41 34.38 0.00 80.55
DGCNN-OcCo [57] 88.67 61.35 53.31 83.64 95.75 89.96 29.22 41.47 46.89 40.64 49.72 33.57 70.11 32.35 0.00 79.74

Table 8: Quantitative results achieved by using OcCo [57], Jigsaw [44] and Random (Rand) initialization on the SensatUrban
dataset, based on PointNet [37], PCN [66] and DGCNN [58] encoders. Note that, all the initialized weights are obtained
by pre-training on the ModelNet40 [60], since these techniques are mainly designed for object-level classification and seg-
mentation. Overall Accuracy (OA, %), mean class Accuracy (mAcc, %), mean IoU (mIoU, %), and per-class IoU (%) are
reported.
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Figure 5: Birmingham split of our SensatUrban dataset. Semantic classes are labeled by different colors.
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Figure 6: Cambridge split of our SensatUrban dataset. Semantic classes are labeled by different colors.



Figure 7: York split of our SensatUrban dataset. The points in York are not labeled but made available for possible pre-training
in semi-supervised or self-supervised schemes. It can be seen that our urban-scale point clouds cover various elements of a
real city, such as train stations, churches, stadiums, highways, etc.
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ground vegetation building wall bridge parking rail car footpath bike water traffic road street furniture

Figure 8: Qualitative results of PointNet [37], PointNet++ [38], RandLA-Net [23] and KPConv [51] on the test set of
SensatUrban dataset. The black dashed box highlights the inconsistency predictions with the ground-truth label.




